Chapter 6

Pseudo inverse of A :

$$
\begin{equation*}
A^{+}=\left(A^{*} A\right)^{-1} A^{*} \tag{6.1}
\end{equation*}
$$

Condition number of $b=A x$.

$$
\begin{equation*}
\kappa(A)=\|A\| \cdot\left\|A^{+}\right\|=\frac{\sigma_{\max }}{\sigma_{\min }} \tag{6.2}
\end{equation*}
$$

Condition number of $\left(A^{*} A\right)$: (normal equation)

$$
\begin{equation*}
\kappa^{2}(A) \tag{6.3}
\end{equation*}
$$

6.1 Floating Point Arithmetic

$$
\begin{align*}
\beta & =\text { radix } \quad(\text { usually } 2) \tag{6.4}\\
t & =\text { precision } \quad \text { (usually } 24 \text { or } 53 \text { in single/double precision }) \tag{6.5}\\
x & = \pm\left(\frac{m}{\beta^{t}}\right) \beta^{e} \tag{6.6}\\
m & : \text { integer } \quad \beta^{t-1} \leq m \leq \beta^{t+1} \tag{6.7}\\
e & : \text { integer } \tag{6.8}
\end{align*}
$$

- Machine epsilon:

$$
\begin{equation*}
\epsilon_{\text {machine }}=\text { half a unit in the last place }=\frac{1}{2} \frac{1}{\beta^{t}} . \tag{6.9}
\end{equation*}
$$

- ± 0 (the need for sign of zero)
- Floating point rounding operator

$$
\begin{equation*}
\forall x \in \mathbb{R}, \exists \epsilon,|\epsilon| \leq \epsilon_{\text {machine }}: f l(x)=x(1+\epsilon) \tag{6.10}
\end{equation*}
$$

The distance between x and the closest floating point number is less than $\epsilon_{\text {machine }}$, i.e., less than $\frac{1}{2}$ unit in last place.

- For all practical purposes we say that the result of any floating point operation conforms to:

$$
\begin{equation*}
f l(x \odot y)=(x \odot y)(1+\delta) \tag{6.11}
\end{equation*}
$$

where, $|\delta| \leq \epsilon_{\text {machine }}$

- Infinity $(\pm \infty)$
- Double precision floating point numbers

1	11	52	
sign	exponent	fraction	
	0	0	± 0
	0	$\neq 0$	subnormal
	11...1	0	\pm infinity
	11...1	$\neq 0$	NAN

Figure 6.1: FloatingPoint.

