3.7 Givens rotations

$$
\left[\begin{array}{cc}
c & s \tag{3.20}\\
-s & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
\sqrt{x^{2}+y^{2}} \\
0
\end{array}\right]
$$

Therefore,

$$
\begin{align*}
c x+s y & =\sqrt{x^{2}+y^{2}} \tag{3.21}\\
s x & =c y \tag{3.22}
\end{align*}
$$

Finally,

$$
\begin{align*}
& c=\frac{y}{\sqrt{x^{2}+y^{2}}} \tag{3.23}\\
& s=\frac{x}{\sqrt{x^{2}+y^{2}}} \tag{3.24}
\end{align*}
$$

Chapter 4

4.1 Householder reflectors

Example:

Find $H: H x=c e_{1},|c|=\|x\|_{2}$. Pick $H=I-2 u u^{*},\|u\|_{2}=1$. Then: $H=H^{*}$ and $H H^{*}=I$, Hermitian unitary matrix

Figure 4.1: Householder Reflectors.
$u=$?

$$
\begin{equation*}
H \cdot x=x-2 u\left(u^{T} x\right)=c \cdot e_{1} \tag{4.1}
\end{equation*}
$$

therefore, u is parallel to $x-c e_{1}$ (and is also of unit length by default).

$$
\begin{equation*}
u=\frac{x-C e_{1}}{\|x\|_{2}} \tag{4.2}
\end{equation*}
$$

which choice of C makes most sense?

$$
\begin{equation*}
C=-\operatorname{sign}\left(x_{1}\right) e_{1}\|x\|_{2} \tag{4.3}
\end{equation*}
$$

therefore, since $u=\frac{v}{\|v\|_{2}}$

$$
\begin{equation*}
v=x+\operatorname{sign}\left(x_{1}\right) e_{1}\|x\|_{2} \tag{4.4}
\end{equation*}
$$

Applying a Householder: $\left(I-2 u u^{T}\right) A$. Naive implementation costs $2 n^{3}$. Instead: $A-2 u\left(u^{T} A\right)$. Matrix-vector $\left(2 n^{2}\right)$, outer product $(2 n)$, and subtract $\left(2 n^{2}\right) \Rightarrow 4 n^{2}$.

