Chapter 10

10.3 Simultaneous Iterations

$$
\begin{align*}
V & =\left[v_{1}, \cdots, v_{n}\right] \tag{10.1}\\
V^{(i)} & =A V^{(i-1)} \tag{10.2}
\end{align*}
$$

$$
\begin{aligned}
& \text { Instead take } \\
& Q^{(0)}=\left[q_{1}, \cdots, q_{n}\right] \text {-orthogonal } \\
& \text { for } k=1,2, \cdots
\end{aligned}
$$

$$
\begin{aligned}
& Z=A Q^{(k-1)} \\
& Q^{(k)} R^{(k)}=Z \\
& A^{(k)}=\left(Q^{(k)}\right)^{T} A Q^{(k)}
\end{aligned}
$$

Chapter 11

11.1 Simultaneous Iteration

$A^{(k)} V \rightarrow$ problematic, all columns of V converge to same v_{1}. Orthogonalized V :

```
Pick \(Q^{(0)}\)--orthogonal
For \(k=1,2, \cdots\)
    \(Z=A Q^{(k-1)}\)
    \(Q^{(k)} R^{(k)}=Z\)
Define \(A^{(k)}=\left(\underline{Q^{(k)}}\right)^{T} A \underline{Q^{(k)}}\)
```


11.2 QR Iteration

$$
\begin{align*}
A^{(0)} & =A \tag{11.1}\\
A^{(k-1)} & =Q^{(k)} R^{(k)} \tag{11.2}\\
A^{(k)} & =R^{(k)} Q^{(k)} \tag{11.3}\\
\underline{Q^{(k)}} & =Q^{(1)} \cdots Q^{(k)} \tag{11.4}
\end{align*}
$$

Define

$$
\begin{equation*}
\underline{R^{(k)}}=R^{(k)} \cdots R^{(1)} \tag{11.5}
\end{equation*}
$$

Therefore, $A^{(k)}$ are the same.

$$
\begin{equation*}
A^{(k)}=\underline{Q^{(k)}} \underline{R^{(k)}} \tag{11.6}
\end{equation*}
$$

Proof: Induction.

$$
\begin{align*}
A^{(k)} & =A \underline{Q}^{(k-1)} \underline{R^{(k-1)}} \\
& =\underline{Q^{(k)} R^{(k)}} \underline{R^{(k-1)}} \\
& =\underline{Q^{(k)}} \underline{R^{(k)}} . \tag{11.7}
\end{align*}
$$

Because of independent assumption on

$$
\begin{equation*}
A^{(k-1)}=\left(Q^{(k-1)}\right)^{T} A Q^{(k-1)} \tag{11.8}
\end{equation*}
$$

Formally:

$$
\begin{align*}
A^{(k)} & =\left(Q^{(k)}\right)^{T} A^{(k-1)} Q^{(k)} \\
& =\underline{\left(Q^{(k)}\right)^{T} A^{(k)} \underline{Q^{(k)}}} . \tag{11.9}
\end{align*}
$$

From QR:

$$
\begin{align*}
A^{(k)} & =A \underline{Q}^{(k-1)} \underline{R}^{(k-1)} \\
& =\underline{Q^{(k-1)} A^{(k-1)} \underline{R}^{(k-1)}} \\
& =\underline{Q^{(k)}} \underline{R^{(k)}} \tag{11.10}
\end{align*}
$$

11.3 Connection with Inverse Iteration

Let A be real and symmetric.

$$
\begin{align*}
A^{(k)} & =\underline{Q^{(k)}} \underline{R^{(k)}} \tag{11.11}\\
\left(A^{k}\right)^{-1} & =\left(R^{(k)}\right)^{-1}\left(Q^{(k)}\right)^{T} \\
& =Q^{(k)}\left(R^{(k)}\right)^{-T} \tag{11.12}
\end{align*}
$$

Let P be the reverse identity

$$
\begin{align*}
P_{i j} & =\left(\delta_{n+1-i, j}\right)_{i, j=1}^{n} \tag{11.13}\\
P & =\left[\begin{array}{c}
1 \\
1 \\
.
\end{array}\right] \tag{11.14}\\
1 & \tag{11.15}\\
A^{-1} P & =\left(\underline{Q^{(k)}} P\right)\left[P\left(\underline{R^{(k)}}\right)^{-T} P\right]
\end{align*}
$$

Simultaneous iteration on P. Simultaneous inverse iteration on A.

11.4 Shifts in QR

$$
\begin{align*}
A^{(k-1)}-\mu^{(k)} I & =Q^{(k)} R^{(k)} \tag{11.16}\\
A^{(k)} & =R^{(k)} Q^{(k)}+\mu^{(k)} I \\
& =\left(Q^{(k)}\right)^{T} A^{(k-1)} Q^{(k)} \\
& =\cdots \\
& =\left(\underline{Q^{(k)}}\right)^{T} A \underline{Q^{(k)}} \tag{11.17}\\
\left(A-\mu^{(k)} I\right)\left(A-\mu^{(k-1)} I\right) \cdots\left(A-\mu^{(1)} I\right) & =Q^{(k)} R^{(k)} \tag{11.18}\\
\underline{Q^{(k)}} & =\prod_{j=1}^{k} Q^{(j)} \tag{11.19}
\end{align*}
$$

is an orthogonalization of A.

11.5 Choice of Shifts

Converge to the last column of $Q^{(k)}$.
Shift:

$$
\begin{align*}
\mu^{(k)} & =\frac{\left(q_{n}^{(k)}\right)^{T} A q_{n}^{(k)}}{\left(q_{n}^{(k)}\right)^{T} q_{n}^{(k)}} \\
& =\left(q_{n}^{(k)}\right)^{T} A q_{n}^{(k)} \\
& =\left(Q^{(k)} e_{n}\right)^{T} A\left(Q^{(k)} e_{n}\right) \\
& =e_{n}^{T}\left(Q^{(k)}\right)^{T} A\left(Q^{(k)}\right) e_{n} \\
& =e_{n}^{T} A^{(k)} e_{n} \\
& =A_{n n}^{(k)} \tag{11.20}
\end{align*}
$$

Rayleigh quotient shift with starting vector e_{n}.
Rayleigh quotient shift does not break this matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
Need Wilkinson shift \rightarrow eigenvalue of $\left[\begin{array}{cc}a_{m-1} & b_{m-1} \\ b_{m-1} & a_{m}\end{array}\right]$ closer to a_{m}.

11.6 Stability

QR iteration is backward stable.

$$
\begin{equation*}
\tilde{Q} \tilde{\Lambda} \tilde{Q}=A+\delta A \tag{11.21}
\end{equation*}
$$

$$
\begin{align*}
\frac{\|\delta A\|}{\|A\|} & =O(\epsilon) \tag{11.22}\\
\left|\tilde{\lambda_{j}}-\lambda_{j}\right| & =O(\epsilon)\|A\| \tag{11.23}
\end{align*}
$$

11.7 Jacobi Method

Algorithm for finding eigenvalues of symmetric matrices.
Idea: Form $J^{T} A J, J$-orthogonal, in such a way that $\|\cdot\|_{F}$ is preserved, but off (A) is reduced the off diagonal, where off $(A)=\sum_{i \neq j}\left|a_{i j}\right|^{2}$ is the sum of the squares of the off diagonal elements.

$$
\begin{align*}
J^{T}\left[\begin{array}{ll}
a & d \\
d & b
\end{array}\right] J & =\left[\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right] \tag{11.24}\\
J & =\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \tag{11.25}\\
\tan 2 \theta & =\frac{2 d}{b-a} \tag{11.26}
\end{align*}
$$

Which $a_{i j}$ do we pick at every step? Pick largest, therefore off (A) decreases by a factor of $1-\frac{2}{m^{2}-m}$. Therefore, $O\left(m^{2}\right)$ steps $(O(m)$ operations per step) are needed for convergence.

