Chapter 9

9.1 Computing Eigenvalues

$$
\begin{align*}
A x & =\lambda x \tag{9.1}\\
A & =X \Lambda X^{-1} \tag{9.2}\\
A X & =X \Lambda \tag{9.3}
\end{align*}
$$

Figure 9.1: $A X=X \Lambda$.

$$
\begin{equation*}
A x=\lambda x \Leftrightarrow(A-\lambda I) x=0 \Leftrightarrow \operatorname{det}(A-\lambda I)=0 \tag{9.4}
\end{equation*}
$$

Definition: $P(\lambda)=\operatorname{det}(A-\lambda I) . P$ is a polynomial of degree n.
Algebraic multiplicity as a root of P and geometric multiplicity equals to the number of linearly independent eigenvectors corresponding to λ.

Theorem: A and $X^{-1} A X$ have the same characteristic polynomial, eigenvalues, algebraic and geometric multiplicities.

Proof: $P\left(X^{-1} A X\right)$: OK. If E_{λ} eigenspace of A then $X^{-1} E_{\lambda}$ is an eigenspace for $X^{-1} A X$. Defective eigenvalue algebraic multiplicity and geometric multiplicity.

A matrix is called diagonalizable if it has an eigenvalue decomposition $A=X \Lambda X^{-1}$, where Λ is diagonal.

Unitarily diagonalizable:

$$
\begin{equation*}
A=Q \Lambda Q^{*} \tag{9.5}
\end{equation*}
$$

happens when A is normal, i.e.,

$$
\begin{equation*}
A^{*} A=A A^{*} \tag{9.6}
\end{equation*}
$$

9.2 Schur Factorization

$$
\begin{equation*}
A=Q T Q^{*} \tag{9.7}
\end{equation*}
$$

where, T-uppet triangular.
Theorem: Every matrix has a Schur factorization.
Algorithms: iteration
Scalar factorization and diagonalization: two phases.

