Chapter 8

8.1 Gaussian Elimination

The process of Gaussian elimination is a fundamental tool in solving linear systems of equations.
Example 1: Consider the linear system:

$$
\begin{align*}
x_{1}+x_{2}+x_{3} & =3 \tag{8.1}\\
x_{1}+2 x_{2}+4 x_{3} & =7 \tag{8.2}\\
x_{1}+3 x_{2}+9 x_{3} & =13 \tag{8.3}
\end{align*}
$$

The traditional way of solving this system is to subtract the first equation from the second and the third to obtain

$$
\begin{align*}
x_{1}+x_{2}+x_{3} & =3 \tag{8.4}\\
x_{2}+3 x_{3} & =4 \tag{8.5}\\
2 x_{2}+8 x_{3} & =12 \tag{8.6}
\end{align*}
$$

Now subtract 2 times the second equation from the third to obtain

$$
\begin{align*}
x_{1}+x_{2}+x_{3} & =3 \tag{8.7}\\
x_{2}+3 x_{3} & =4 \tag{8.8}\\
2 x_{3} & =2 \tag{8.9}
\end{align*}
$$

Now we can perform back substitution:

$$
\begin{equation*}
x_{3}=1 \tag{8.10}
\end{equation*}
$$

$$
\begin{align*}
& x_{2}=3-3 x_{3}=4-3 \cdot 1=1 \tag{8.11}\\
& x_{1}=3-x_{2}-x_{3}=3-1-1=1 . \tag{8.12}
\end{align*}
$$

Instead of performing the same process for every right hand side, it is more advantageous to use matrix factorizations instead. Write the System 8.1-8.3 as

$$
\left[\begin{array}{lll}
1 & 1 & 1 \tag{8.13}\\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
3 \\
7 \\
13
\end{array}\right]
$$

In general linear systems are written as

$$
\begin{equation*}
A x=b \tag{8.14}
\end{equation*}
$$

or

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \tag{8.15}\\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

where we assume that leading principal minors $A(1: k, 1: k), k=1,2, \ldots, n$, of the n-by- n matrix $A=\left[a_{i j}\right]_{i, j=1}^{n}$ are nonzero.

Some linear systems are easy to solve. For example if A is triangular or diagonal.
If A is (lower or upper) triangular nonsingular matrix then $A x=b$ can be solved via back substitution. The system

$$
\left[\begin{array}{cccc}
a_{11} & & & \tag{8.16}\\
a_{21} & a_{22} & & \\
\vdots & \vdots & \ddots & \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

(the zero entries of the upper triangular part have been omitted) is equivalent to

$$
\begin{align*}
a_{11} x_{1} & =b_{1} \tag{8.17}\\
a_{21} x_{1}+a_{22} x_{2} & =b_{2} \tag{8.18}\\
& \cdots \tag{8.19}\\
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n} & =b_{n}
\end{align*}
$$

and is solved by computing x_{1} from the first equation, substituting into the second and so on:

$$
\begin{align*}
x_{1} & =\frac{b_{1}}{a_{11}} \tag{8.20}\\
x_{2} & =\frac{1}{a_{21}}\left(b_{2}-a_{21} x_{1}\right) \tag{8.21}\\
& \cdots \\
x_{n} & =\frac{1}{a_{n n}}\left(b_{n}-a_{n 1} x_{1}-a_{n 2} x_{2}-\ldots-a_{n, n-1} x_{n-1}\right) \tag{8.22}
\end{align*}
$$

The solution to a diagonal linear system is trivial:

$$
\left[\begin{array}{cccc}
d_{1} & & & \tag{8.23}\\
& d_{2} & & \\
& & \ddots & \\
& & & d_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

implies $x_{i}=\frac{b_{i}}{d_{i}}, i=1,2, \ldots, n$.
Definition: A matrix A is called unit lower triangular if $a_{i j}=0,1 \leq i<j \leq n$ and $a_{i i}=1$, $1 \leq i \leq n$.

An unit upper triangular matrix is defined analogously.
Example: The following 4-by-4 matrix is unit lower triangular

$$
\left[\begin{array}{llll}
1 & & & \tag{8.24}\\
2 & 1 & & \\
3 & 5 & 1 & \\
4 & 6 & 7 & 1
\end{array}\right]
$$

Exercise: Prove that if A and B are unit lower triangular matrices, then so are A^{-1} and $A B$.
Definition: Let A be a nonsingular matrix, then a decomposition of A as a product of a unit lower triangular matrix L, a diagonal matrix D and a unit upper triangular matrix U :

$$
\begin{equation*}
A=L D U \tag{8.25}
\end{equation*}
$$

is called an $L D U$ decomposition of A.
The main idea in what follows is to use Gaussian elimination to compute the LDU decomposition of A.

Once we have the LDU decomposition of A, the equation $A x=b$ becomes $L D U x=b$, which is easy to solve. First compute the solution y to the lower triangular system $L y=b$, then the solution z to the diagonal system $D z=y$, and finally the solution x to the upper triangular system $U x=z$. Finally,

$$
\begin{equation*}
A x=L D U x=L D(U x)=L(D z)=L y=b \tag{8.26}
\end{equation*}
$$

as desired.
So how does one compute the LDU decomposition of a nonsingular matrix A ?

First we represent a subtraction of a multiple of one row from another in matrix form. Consider the matrix:

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \tag{8.27}\\
1 & 2 & 4 \\
3 & 9 & 27
\end{array}\right]
$$

In order to introduce a zero in position $(3,1)$ we need to subtract 3 times the first row from the third. This is equivalent to multiplication by the matrix

$$
\left[\begin{array}{ccc}
1 & & \tag{8.28}\\
0 & 1 & \\
-3 & 0 & 1
\end{array}\right]
$$

namely

$$
\left[\begin{array}{ccc}
1 & & \tag{8.29}\\
0 & 1 & \\
-3 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 4 \\
3 & 9 & 27
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 4 \\
0 & 6 & 24
\end{array}\right]
$$

Since

$$
\left[\begin{array}{ccc}
1 & & \tag{8.30}\\
0 & 1 & \\
-3 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{lll}
1 & & \\
0 & 1 & \\
3 & 0 & 1
\end{array}\right]
$$

the equality 8.29 implies

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \tag{8.31}\\
1 & 2 & 4 \\
3 & 9 & 27
\end{array}\right]=\left[\begin{array}{ccc}
1 & & \\
0 & 1 & \\
3 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 4 \\
0 & 6 & 24
\end{array}\right]
$$

Next, subtract the first row from the second to analogously obtain

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \tag{8.32}\\
1 & 2 & 4 \\
0 & 6 & 24
\end{array}\right]=\left[\begin{array}{ccc}
1 & & \\
1 & 1 & \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 6 & 24
\end{array}\right]
$$

Now observe that the matrices used for elimination combine very nicely:

$$
\left[\begin{array}{lll}
1 & & \tag{8.33}\\
0 & 1 & \\
3 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & & \\
1 & 1 & \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & & \\
1 & 1 & \\
3 & 0 & 1
\end{array}\right]
$$

therefore

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \tag{8.34}\\
1 & 2 & 4 \\
3 & 9 & 27
\end{array}\right]=\left[\begin{array}{ccc}
1 & & \\
1 & 1 & \\
3 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 6 & 24
\end{array}\right]
$$

Then continue by induction-subtract 6 times the second row from the third, obtaining the decomposition

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \tag{8.35}\\
0 & 1 & 3 \\
0 & 6 & 24
\end{array}\right]=\left[\begin{array}{ccc}
1 & & \\
0 & 1 & \\
0 & 6 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 0 & 6
\end{array}\right]
$$

Therefore

$$
\begin{align*}
{\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
3 & 9 & 27
\end{array}\right] } & =\underbrace{\left[\begin{array}{lll}
1 & & \\
1 & 1 & \\
3 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & \\
0 & 1 & \\
0 & 6 & 1
\end{array}\right]} \cdot\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 0 & 6
\end{array}\right] \tag{8.36}\\
& =\underbrace{\left[\begin{array}{lll}
1 & 1 & \\
3 & 6 & 1
\end{array}\right]}_{L} \cdot \tag{8.37}\\
& =\underbrace{\left[\begin{array}{lll}
1 & & \\
1 & 1 & \\
3 & 6 & 1
\end{array}\right]}_{D} \cdot \underbrace{\left[\begin{array}{lll}
1 & \\
& 1 & \\
& 6
\end{array}\right]}_{\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 0 & 6
\end{array}\right]} \cdot \underbrace{}_{\underbrace{\left[\begin{array}{lll}
1 & 1 & 1 \\
& 1 & 3 \\
& & 1
\end{array}\right]}_{U}} \tag{8.38}
\end{align*}
$$

Algorithm: [Gaussian Elimination] The following algorithm computes the LDU decomposition of a matrix A whose leading principal minors are nonzero.

$$
\begin{aligned}
& U=A, L=I, D=I \\
& \text { for } i=1: n-1 \\
& \quad \text { for } j=i+1: n \\
& \quad l_{j i}=u_{j i} / u_{i i} \\
& \quad u_{j, i: n}=u_{j, i: n}-l_{j i} u_{i, i: n} \\
& \text { endfor } \\
& d_{i i}=u_{i i} \\
& u_{i, i: n}=u_{i, i: n} / d_{i i} \\
& \text { endfor }
\end{aligned}
$$

8.2 Pivoting, Partial and Complete

$$
\begin{equation*}
P_{1} A=L_{1} A_{1} \tag{8.39}
\end{equation*}
$$

$$
\begin{align*}
P_{2} A_{2} & =L_{2} A_{2} \tag{8.40}\\
\ldots & \\
A & =P_{1}^{T} L_{1} A_{1} \\
& =P_{1}^{T} L_{1} P_{2}^{T} L_{2} A_{2} \\
& =P_{1}^{T} L_{1} P_{2}^{T} L_{2} P_{3}^{T} L_{3} U \\
& =P_{1}^{T} P_{2}^{T} P_{3}^{T}\left(\left(P_{2}^{T} P_{3}^{T}\right)^{-1} L_{1} P_{2}^{T} P_{3}^{T}\right)\left(P_{3} L_{2} P_{3}^{T}\right) L_{3} U \\
& =P_{1}^{T} P_{2}^{T} P_{3}^{T} L_{1} L_{2} L_{3} U \tag{8.41}\\
& =P^{T} L U
\end{align*}
$$

Complete pivoting: two sided

$$
\begin{equation*}
A=P^{T} L U Q^{T} \tag{8.42}
\end{equation*}
$$

Operation count: $\frac{2}{3} n^{3}$ for GENP and GEPP, for complete pivoting

$$
\begin{align*}
n^{2}+(n-1)^{2}+\cdots & =\frac{n(n+1)(2 n+1)}{6} \\
& =\frac{2}{3} n^{3} \text { additional } \tag{8.43}
\end{align*}
$$

8.3 Stability of GE

Example:

$$
\begin{align*}
A & =L U \tag{8.44}\\
{\left[\begin{array}{cc}
10^{-16} & 1 \\
1 & 1
\end{array}\right] } & =\left[\begin{array}{cc}
1 & 0 \\
10^{16} & 1
\end{array}\right]\left[\begin{array}{cc}
10^{-16} & 1 \\
0 & 1-10^{16}
\end{array}\right] \tag{8.45}\\
\|A\| & =O(1) \tag{8.46}\\
\|L\|,\|U\| & =O\left(10^{16}\right) \tag{8.47}\\
A x & =b \tag{8.48}\\
L U x & =x \tag{8.49}\\
L y & =b \tag{8.50}\\
U x=y & \tag{8.51}\\
(L+\delta L) \hat{y} & =b \tag{8.52}\\
\frac{\|\delta L\|}{\|L\|} & =O(\epsilon) \tag{8.53}\\
\|\delta L\| & =O(1) \tag{8.54}\\
(U+\delta U) \hat{x} & =y \tag{8.55}
\end{align*}
$$

$$
\begin{align*}
\frac{\|\delta U\|}{\|U\|} & =O(\epsilon) \tag{8.56}\\
\|\delta U\| & =O(1) \tag{8.57}\\
A+\underbrace{(L L U+\delta L)(U+\delta U) \hat{x}}_{\delta A} & =b \tag{8.58}\\
& =O\left(10^{16}\right) \\
\frac{\|\delta A\|}{\|A\|} & =O\left(10^{16}\right), \tag{8.59}
\end{align*}
$$

while we expected ϵ.
Theorem: A : nonsingular. Let $A=L U$ be computed by GENP in floating point arithmetic. If A has an $L U$ factorization, then for sufficiently small $\epsilon_{\text {machine }}$, the factorization completes successfully and

$$
\begin{equation*}
\tilde{L} \tilde{U}=A+\delta A \tag{8.61}
\end{equation*}
$$

where,

$$
\begin{equation*}
\frac{\|\delta A\|}{\|L\| \cdot\|U\|}=O\left(\epsilon_{\text {machine }}\right) \tag{8.62}
\end{equation*}
$$

for some $\delta A \in \mathcal{C}^{n \times n}$.
Backward Stability?
Need

$$
\begin{equation*}
\frac{\|\delta A\|}{\|A\|}=O\left(\epsilon_{\text {machine }}\right) \tag{8.63}
\end{equation*}
$$

then

$$
\begin{equation*}
\text { backward stability } \Leftrightarrow\|L\| \cdot\|U\|=O(\|A\|) \quad ? \tag{8.64}
\end{equation*}
$$

Need to measure $\frac{\|L\| \cdot\|U\|}{\|A\|}$ and make sure it is $O\left(\epsilon_{\text {machine }}\right)$.
No pivoting: unstable.
Partial pivoting:

$$
\begin{equation*}
\|L\|_{\infty} \leq n \tag{8.65}
\end{equation*}
$$

since

$$
\begin{equation*}
\left|l_{i j}\right|<1 \tag{8.66}
\end{equation*}
$$

so the question moves down to the size of

$$
\begin{equation*}
\frac{\|U\|}{\|A\|} \simeq \frac{\max \left|u_{i j}\right|}{\max \left|a_{i j}\right|} \equiv \rho \tag{8.67}
\end{equation*}
$$

where ρ is called growth factor.
Therefore,

$$
\begin{align*}
\tilde{L} \tilde{U} & =A+\delta A \tag{8.68}\\
\frac{\|\delta A\|}{\|A\|} & =O\left(\rho \epsilon_{\text {machine }}\right) \tag{8.69}
\end{align*}
$$

stable if $\rho=O(1)$.
Partial Pivoting: $\rho \leq 2^{n}$, attainable, but never happens. Usually $\leq n^{\frac{1}{2}}$.
Complete Pivoting: $\rho=O(1)$, but cost $\frac{4}{3} n^{3}$, same as QR .

