18.335 Practice Midterm

1. (5 points) Let A be real symmetric and positive semidefinite, i.e. $x^{T} A x \geq 0$ for all $x \neq 0$. Show that if the diagonal of A is zero, then A is zero.
2. (5 points) Show that if

$$
Y=\left[\begin{array}{ll}
I & Z \\
0 & I
\end{array}\right]
$$

then $\kappa_{F}(Y)=2 n+\|Z\|_{F}^{2}$.
3. Let

$$
T=\left[\begin{array}{cccc}
a_{1} & b_{1} & & \\
c_{1} & \ddots & \ddots & \\
& \ddots & \ddots & b_{n-1} \\
& & c_{n-1} & a_{n}
\end{array}\right]
$$

be a real, n-by- n, nonsymmetric tridiagonal matrix where $c_{i} b_{i}>0$ for all $1 \leq i \leq n-1$. Show that the eigenvalues of T are real (5 points) and distinct (5 points).
Hint: Find a diagonal matrix D such that $C=D T D^{-1}$ is symmetric. Then argue about the rank of $C-\lambda I$.
4. (5 points) Let A be symmetric positive definite matrix with Cholesky factor C, i.e. $A=C^{T} C$. Show that $\|A\|_{2}=\|C\|_{2}^{2}$.
5. (5 points) If A and B are real symmetric positive definite matrices then decide whether the following are true, justifying your results:

- $A+B$ is symmetric positive definite.
- $A \cdot B$ is symmetric positive definite.

6. (5 points) Prove that $\operatorname{det}\left(I+x y^{T}\right)=1+x^{T} y$.
