25 As a multiple of the period $2 \pi(\mathrm{~L} / \mathrm{g})^{1 / 2}$ for oscillations of infinitesimal amplitude, figure out to our usual high accuracy how long it will take a simple pendulum of length L subject to gravity g to execute one complete cycle after starting from rest in the horizontal position sketched on the right. Work this out carefully as a guadrature problem based on the speed at
 each angle given by the obvious energy integral.

26 Check this answer by using the leapfrog method (and maybe also RK4, for extra comfort but hardly any extra credit!) to advance

$$
\mathrm{d} \theta / \mathrm{dt}=\mathrm{u}, \quad \mathrm{du} / \mathrm{dt}=-\sin \theta
$$

onward by one-quarter of that period from the position shown.

PS: By leapfrog we here mean the scheme designed for $x^{\prime \prime}=f(x)$ which begins from the known pair x_{0}, u_{0} by first advancing the former variable to $x_{1}=x_{0}+h u_{0}$, and then hops onward like

$$
u_{n+1} \Rightarrow u_{n-1}+2 h f\left(x_{n}\right), \quad x_{n+2}=x_{n}+2 h u_{n+1}
$$

for $n=1,3,5, \ldots, N-1$, finally texminating with another halfstep $x_{N}=x_{N-1}+h u_{N-1}$, where N is presumed to be even.

One clever and efficient way of evaluating the Bessel fumction $J_{0}(x)$ and some kin like $J_{1}(x), J_{2}(x), J_{3}(x), \ldots$ starts from a deliberately "idiotic" pair of guesses like $J_{K+1}(x)=0$ and $J_{K}(x)=1$ and simply iterates backwards through the recurrence relation

$$
J_{n-1}(x)+J_{n+1}(x)=(2 n / x) J_{n}(x)
$$

known to relate these functions at any given x. This trick is very similar to the "parasitic" solutions of certain multistep oDE methods like Milne or the $1-D$ leapfrog, but here that former nuisance is put to constructive use via the further identity

$$
J_{0}(x)+2 J_{2}(x)+2 J_{4}(x)+2 J_{6}(x)+\cdots=I
$$

Which permits the above mumbo-jumbo to be scaled back down to sane values afterward! Try this out for $x=2,4,6, \ldots, 20$ and tell us what minimum values of the starting index K you found to be needed at each such x to obtain $J_{0}(x)$ correctly to 6 decimals.

