19) For the initial-value $O D E$ problem $d y / d x=x^{2}-y^{2}, y(0)=0$:
(a) Proceed to estimate $y(2)$ via a sequence of simple Euler integrations using steps of size $h=1,1 / 2,1 / 4,1 / 8, \ldots$ and as much Richardson extrapolation as you can stomach.
(b) Repeat the above using some well-known second-order scheme.
(c) Recalculate $y(2)$ via Taylor series for the function $u(x)$, after making the Riccati substitution $y(x)=u^{\prime}(x) / u(x)$.
(d) Quickly estimate $y(1000)$ to at least SIX significant digits.
20) By any reasonably elegant and efficient strategy, try and answer to high accuracy:
(a) If $y(0)=0$ and $d y / d x=e^{-x y}$, what limiting value does the solution $y(x)$ approach as x grows large and positive?
(b) If again $y(0)=0$ but $d y / d x=e^{+x y}$, at what finite value of x does this new $y(x)$ "explode" upward to +infinity?
21) Shown overleaf are some attractive integral curves for the ODE

$$
y^{\prime}=\cos (x y)
$$

Find to high accuracy (again at least 6 and preferably 9+ decimals)
(a) the value $y(3)$, given that $y(0)=3$; and
(b) that critical starting value $Y(0)=$ approx 2.8 - marked with one of the $x^{\prime} e s$ - which like some Continental Divide separates the first and second solution bundles here.

