```
(7) For the pseudosquare \(\mathrm{x}^{4}+\mathrm{y}^{4}=1\)
pictured on the right, calculate
    (a) the area A, and
        (b) the circumference \(s\)
to our usual exquisite accuracy.
```


8 (a) To a commendable final accuracy, practice Romberg extrapolations on the trapezoidal-rule estimates $T_{1}, T_{2}, T_{4}, T_{8} \ldots$ for

$$
\int_{0}^{\pi} \frac{\sin x}{x} d x
$$

(b) Likewise exercise the 3, 5, 7 and 9-point closed Newton-Cotes formulas whose coefficients are given overleaf. Compare their errors with those of Romberg at the same orders of accuracy.
(c) Finally, polish off this integral also via Taylor series.

9 For the more challenging integral

$$
\int_{0}^{\pi} \sqrt{\sin x} d x
$$

(a) Examine carefully the manner in which similar trapezoidal estimates $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{4}, \mathrm{~T}_{8} \ldots$ seem to be converging toward their eventual limit, and then speed them along to at least 6 -decimal accuracy via some variants of Aitken or Richardson.
(b) Startle yourself by examining how fast even the humble old trapezoidal rule manages to evaluate this integral after we rephrase things slightly via $x=(\pi / 2)(1-\cos \theta)$.

Comparison of Romberg and Closed NC Weights and Errors

Given $f(x)$ at $\quad x=0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \mathrm{~h}:$

2nd order:
.
Trapezoidal

4th order:

Simpson

6th order:

2× Extrap

8th order:

3x Extrap.

$$
T_{1248}
$$

$$
\begin{array}{lllllllll}
217 & 1024 & 352 & 1024 & 436 & 1024 & 352 & 1024 & 217
\end{array}
$$

$$
\times \frac{4 h}{2835}
$$

10th order:

9pt NC

Too large by:

$$
\begin{aligned}
& 64 \\
& 16 \\
& 4 \times \frac{2}{3} h^{3} f^{n}(\xi) \\
& 256 \\
& 16 \\
& 1 \times \frac{2}{45} h^{5} f^{i v} \\
& 64 \\
& 1 \times \frac{16}{945} h^{7} f^{v i} \\
& \left(\frac{4}{3}\right]^{9} \cdot \frac{9}{1400} h^{9} f^{v i i i} \\
& 1 \times \frac{128}{315} h^{9} f^{v i i i} \\
& \frac{2368}{467775} h^{11} f^{x}
\end{aligned}
$$

