4) Make it your business to track down to high accuracy, in two ways starting from the initial guess $z_{0}=1+i$, that root of

$$
z^{4}+z+1=0
$$

which resides in the first quadrant of the complex z-plane. Employ
(a) the comlex Heuton method, and less efficiently also
(b) some real variable search for that x, y pair which solves simultaneously the related pair of equations

$$
x^{4}-6 x^{2} y^{2}+y^{4}+x+1=0, \quad 4 x^{3} y-4 x y^{3}+y=0 .
$$

5 The well-known Legendre polynomials
$P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\left(3 x^{2}-1\right) / 2, \quad P_{3}(x)=\left(5 x^{3}-3 x\right) / 2, \ldots$
obey the recurrence relation

$$
(n+1) p_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x) .
$$

Hence locate via Newton's method to at least 6 decimals that root of $P_{30}(x)$ which lies closest to $x=0.5$, left or right.

6 As implied by the diagram overleaf, the famous quadratic iteration

$$
x_{n+I}=C x_{n}\left(I-x_{n}\right) \equiv g\left(x_{n}\right)
$$

settles down to a stable two-hop cycle when the constant C exceeds 3 but does not exceed an upper critical value roughly equal to 3.45 .

Your task: Analyze the stability of the "stroboscopic" iteration

$$
x_{n+2}=g\left[g\left(x_{n}\right)\right] \equiv G\left(x_{n}\right),
$$

and thereby locate the precise value of c at which this related two-hop cycle bifurcates in turn.

```
Results of the iteration
```

$x_{n+1}=C x_{n}\left(1-x_{n}\right)$

