(31) Figure out carefully the "condition number" $\mathrm{CN} \underset{\rightarrow}{\equiv \max \{|\vec{b}||\delta \vec{x}| /|\vec{x}||\delta \vec{b}|\}}$ referring to vectors such that $\underline{A} \vec{x}=\vec{b}$ and $\underline{A}(\vec{x}+\delta \vec{x})=(\vec{b}+\delta \vec{b})$ and to the asymmetric matrix

$$
\underline{A}=\left[\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right]
$$

Propose vectors $\vec{x}, \vec{b}, \delta \vec{x}$ and $\delta \vec{b}$ to illustrate this "worst case". scenario, and also contrast your result with the erroneous answer $\mathrm{CN}=\max |\lambda| / \min |\lambda|$ (mis)inspired by the theory for the related symmetric matrix
$\underline{B}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$.

32 Reproduced overleaf is an old one-hour exam from the course 18.086. Its three problems should by now look very familiar also to you. So polish them off, please, at your leisure ... here meant not as any fresh exam but instead simply as a source of nice exercises!

33 Determine the sag $u(\pi / 2, \pi / 2)$ at the center of a uniformly-loaded square membrane obeying the Poisson PDE

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=1
$$

and also the sensible requirement that $u=0$ along all four of its edges of length π.

For that purpose, build yourself a uniform $N \times N$ mesh demanding

$$
u_{i, j-1}+u_{i, j+1}+u_{i-1, j}+u_{i+1, j}-4 u_{i, j}=h^{2}
$$

in the interior, and $u_{i, 0}=u_{i, N}=u_{0, j}=u_{N, j}=0$ at the edges.
From this, compute $u_{N / 2, N / 2}$ once again to at least 6 or 9 decimals with the help of Gauss-Seidel-type successive over-relaxations for $N=10,14,20,28,40$, etc. using SOR coefficient $\omega=$ approx 1.5 . Follow that by ample Richardson extrapolations, since we are seeking this PDE answer really in the limit at N approaches infinity.

PS: Sag $u(\pi / 2, \pi / 2)=-\pi^{2} / 16$ at the center of circular membrane of diameter π.

