(28) Find the LU decomposition of the Pascal matrix $\underline{R}=$
$\left[\begin{array}{rrrrr}1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 35 & 70\end{array}\right]$
and then use it to ascertain the smallest eigenvalue of this matrix via repeated application - clearly explained and exemplified - of the so-called inverse poner method. Also track down the largest eigenvalue of $\underline{\underline{P}}$ via the normal power method ... and thus rediscover a very remarkable relationship between those two values.

29 By iteration of one sort or another, solve (and describe how you solved) the appended two sets of equations from a textbook by Froberg:

$$
\begin{array}{rlrl}
\text { (a) } & \text { (b) } \\
x_{1}+10 x_{2}+x_{3} & & =10 & x-0.1 y^{2}+0 \\
2 x_{1}+20 x_{3}+x_{4} & =10 & y+0.3 x^{2}-0 \\
10 x_{1}+x_{2} & & =30 x_{5}+3 x_{4} & =0 \\
-x_{4} & =5 & z+0.4 y^{2}+0 \\
2 x_{4}-2 x_{3}+20 x_{1} & =5 & \\
x_{3}+10 x_{4}-x_{3} & =0
\end{array}
$$

30) To dwell on an increasingly pparse matrix, consider the passive electrical circuit that consists of $2 \mathrm{~N}(\mathrm{~N}-1)$ perfect one-ohm resistors wired into a square lattice such as pictured on the right for $N=4$.

For $N=2$ it is easy to calculate that the total resistance between diagonally opposite corners like A and B is precisely 1 ohm . For $\mathrm{N}=3$ it is $3 / 2 \mathrm{ohm}$, and for $N=4$ it is $13 / 7$ ohm .

What is that resistance when $\mathrm{N}=10$? HINT: Introduce voltages at all N^{2} nodes, and prescribe (say) $V_{A}=+1$ and $V_{B}=-1$ volt.

