
4 The Sperner property. 

In this section we consider a surprising application of certain adjacency ma
trices to some problems in extremal set theory. An important role will also 
be played by finite groups. In general, extremal set theory is concerned with 
finding (or estimating) the most or least number of sets satisfying given set-
theoretic or combinatorial conditions. For example, a typical easy problem 
in extremal set theory is the following: What is the most number of subsets 
of an n-element set with the property that any two of them intersect? (Can 
you solve this problem?) The problems to be considered here are most con
veniently formulated in terms of partially ordered sets, or posets for short. 
Thus we begin with discussing some basic notions concerning posets. 

4.1 Definition. A poset (short for partially ordered set) P is a finite 
set, also denoted P , together with a binary relation denoted � satisfying the 
following axioms: 

(P1) (reflexivity) x � x for all x √ P 

(P2) (antisymmetry) If x � y and y � x, then x = y. 

(P3) (transitivity) If x � y and y � z, then x � z. 

One easy way to obtain a poset is the following. Let P be any collection 
of sets. If x, y √ P , then define x � y in P if x ∪ y as sets. It is easy to see 
that this definition of � makes P into a poset. If P consists of all subsets 
of an n-element set S, then P is called a (finite) boolean algebra of rank n 
and is denoted by BS . If S = {1, 2, . . . , n}, then we denote BS simply by Bn. 
Boolean algebras will play an important role throughout this section. 

There is a simple way to represent small posets pictorially. The Hasse 
diagram of a poset P is a planar drawing, with elements of P drawn as dots. 
If x < y in P (i.e., x � y and x = y), then y is drawn “above” x (i.e.,∈
with a larger vertical coordinate). An edge is drawn between x and y if 
y covers x, i.e., x < y and no element z is in between, i.e., no z satisfies 
x < z < y. By the transitivity property (P3), all the relations of a finite 
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poset are determined by the cover relations, so the Hasse diagram determines 
P . (This is not true for infinite posets; for instance, the real numbers R with 
their usual order is a poset with no cover relations.) The Hasse diagram of 
the boolean algebra B3 looks like 

� 123 

� 12 � 13 �� 23 

� 1 �� 2 �� 3 

�� Ø 

We say that two posets P and Q are isomorphic if there is a bijection 
(one-to-one and onto function) � : P � Q such that x � y in P if and only 
if �(x) � �(y) in Q. Thus one can think that two posets are isomorphic if 
they differ only in the names of their elements. This is exactly analogous to 
the notion of isomorphism of groups, rings, etc. It is an instructive exercise 
to draw Hasse diagrams of the one poset of order (number of elements) one 
(up to isomorphism), the two posets of order two, the five posets of order 
three, and the sixteen posets of order four. More ambitious readers can try 
the 63 posets of order five, the 318 of order six, the 2045 of order seven, the 
16999 of order eight, the 183231 of order nine, the 2567284 of order ten, the 
46749427 of order eleven, the 1104891746 of order twelve, the 33823827452 
of order thirteen, and the 1338193159771 of order fourteen. Beyond this the 
number is not currently known. 

A chain C in a poset is a totally ordered subset of P , i.e., if x, y √ C then 
either x � y or y � x in P . A finite chain is said to have length n if it has 
n + 1 elements. Such a chain thus has the form x0 < x1 < < xn. We say· · · 
that a finite poset is graded of rank n if every maximal chain has length n. 
(A chain is maximal if it’s contained in no larger chain.) For instance, the 
boolean algebra Bn is graded of rank n [why?]. A chain y0 < y1 < · · · < yj is 
said to be saturated if each yi+1 covers yi. Such a chain need not be maximal 
since there can be elements of P smaller than y0 or greater than yj . If P is 
graded of rank n and x √ P , then we say that x has rank j, denoted α(x) = j, 
if some (or equivalently, every) saturated chain of P with top element x has 
length j. Thus [why?] if we let Pj = {x √ P : α(x) = j}, then P is a 
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disjoint union P = P0 ≤P1 ≤ · · · ≤Pn, and every maximal chain of P has the 
form x0 < x1 < < xn where α(xj ) = j. We write pj = Pj , the number · · · | |
of elements of P of rank j. For example, if P = Bn then α(x) = x (the| |
cardinality of x as a set) and 

n 
x = j} = .pj = #{x ∪ {1, 2, · · · , n} : | | 

j 

(Note that we use both S and #x for the cardinality of the finite set S.)| | 

We say that a graded poset P of rank n (always assumed to be finite) 
is rank-symmetric if pi = pn−i for 0 � i � n, and rank-unimodal if p0 

p1 ← pj+2 n for some 0 � j � n. If P is both � · · · � pj ← pj+1 ← · · · ← p
rank-symmetric and rank-unimodal, then we clearly have 

m ← pm+1 ← · · · ← pn, if n = 2mp0 � p1 � · · · � p

m = pm+1 ← pm+2 ← · · · ← pn, if n = 2m + 1. 

p

p0 � p1 � · · · � p


We also say that the sequence p0, p1, . . . , pn itself or the polynomial F (q) =

0 + p1q + + pnqn is symmetric or unimodal, as the case may be. For
· · · 

instance, Bn is rank-symmetric and rank-unimodal, since it is well-known 
n n(and easy to prove) that the sequence 
0 , n , . . . , (the nth row of Pas

1 n 
cal’s triangle) is symmetric and unimodal. Thus the polynomial (1 + q)n is 
symmetric and unimodal. 

A few more definitions, and then finally some results! An antichain in 
a poset P is a subset A of P for which no two elements are comparable, 
i.e., we can never have x, y √ A and x < y. For instance, in a graded 
poset P the “levels” Pj are antichains [why?]. We will be concerned with the 
problem of finding the largest antichain in a poset. Consider for instance the 
boolean algebra Bn. The problem of finding the largest antichain in Bn is 
clearly equivalent to the following problem in extremal set theory: Find the 
largest collection of subsets of an n-element set such that no element of the 
collection contains another. A good guess would be to take all the subsets 
of cardinality ⊂n/2⊆ (where ⊂x⊆ denotes the greatest integer � x), giving a 
total of n sets in all. But how can we actually prove there is no larger 

≥n/2∈ 
collection? Such a proof was first given by Emmanuel Sperner in 1927 and 
is known as Sperner’s theorem. We will give two proofs of Sperner’s theorem 
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in this section; one proof uses linear algebra and will be applied to certain 
other situations, while the other proof is an elegant combinatorial argument 
due to David Lubell in 1966, which we present for its “cultural value.” Our 
extension of Sperner’s theorem to certain other situations will involve the 
following crucial definition. 

4.2 Definition. Let P be a graded poset of rank n. We say that P 
has the Sperner property or is a Sperner poset if 

max{|A : A is an antichain of P} = max{|Pi : 0 � i � n .| | }

In other words, no antichain is larger than the largest level Pi. 

Thus Sperner’s theorem is equivalent to saying that Bn has the Sperner 
property. Note that if P has the Sperner property there may still be an
tichains of maximum cardinality other than the biggest Pi; there just can’t 
be any bigger antichains. 

4.3 Example. A simple example of a graded poset that fails to satisfy 
the Sperner property is the following: 

P

We now will discuss a simple combinatorial condition which guarantees 
that certain graded posets P are Sperner. We define an order-matching from 

i to Pi+1 to be a one-to-one function µ : Pi � Pi+1 satisfying x < µ(x) 
for all x √ Pi. Clearly if such an order-matching exists then pi i+1� p
(since µ is one-to-one). Easy examples show that the converse is false, i.e., 
if pi � pi+1 then there need not exist an order-matching from Pi to Pi+1. 
We similarly define an order-matching from Pi to Pi−1 to be a one-to-one 
function µ : Pi � Pi−1 satisfying µ(x) < x for all x √ Pi. 

4.4 Proposition. Let P be a graded poset of rank n. Suppose there 
exists an integer 0 � j � n and order-matchings 

P0 � P1 � P j � Pj+1 � P n. (17)2 � · · · � P j+2 � · · · � P

Then P is rank-unimodal and Sperner. 

20 



� 

Proof. Since order-matchings are one-to-one it is clear that 

← pj+2 n.p0 � p1 � · · · � pj ← pj+1 ← · · · ← p

Hence P is rank-unimodal. 

Define a graph G as follows. The vertices of G are the elements of P . Two 
vertices x, y are connected by an edge if one of the order-matchings µ in the 
statement of the proposition satisfies µ(x) = y. (Thus G is a subgraph of the 
Hasse diagram of P .) Drawing a picture will convince you that G consists of 
a disjoint union of paths, including single-vertex paths not involved in any 
of the order-matchings. The vertices of each of these paths form a chain in 

P

P . Thus we have partitioned the elements of P into disjoint chains. Since P 
is rank-unimodal with biggest level Pj , all of these chains must pass through 

j [why?]. Thus the number of chains is exactly pj . Any antichain A can 
intersect each of these chains at most once, so the cardinality A of A cannot|	 |
exceed the number of chains, i.e., A � pj . Hence by definition P is Sperner. |	 | 

It is now finally time to bring some linear algebra into the picture. For 
any (finite) set S, we let RS denote the real vector space consisting of all 
formal linear combinations (with real coefficients) of elements of S. Thus S 
is a basis for RS, and in fact we could have simply defined RS to be the 
real vector space with basis S. The next lemma relates the combinatorics we 
have just discussed to linear algebra and will allow us to prove that certain 
posets are Sperner by the use of linear algebra (combined with some finite 
group theory). 

RP
4.5 Lemma. Suppose there exists a linear transformation U : RPi � 
i+1 (U stands for “up”) satisfying: 

U	 is one-to-one. • 

•	 For all x √ Pi, U(x) is a linear combination of elements y √ Pi+1 

satisfying x < y. (We then call U an order-raising operator.) 

Then there exists an order-matching µ : Pi � Pi+1. 
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Similarly, suppose there exists a linear transformation U : RPi � RPi+1 

satisfying: 

U is onto. • 

• U is an order-raising operator. 

Then there exists an order-matching µ : Pi+1 � Pi. 

p

P

Proof. Suppose U : RPi � RPi+1 is a one-to-one order-raising operator. 
Let [U ] denote the matrix of U with respect to the bases Pi of RPi and Pi+1 

of RPi+1. Thus the columns of [U ] are indexed by the elements x1, . . . , xpi of 
i (in some order) and the rows by the elements y1, . . . , ypi+1 of Pi+1. Since 

U is one-to-one, the rank of [U ] is equal to pi (the number of columns). Since 
the column rank of a matrix equals its row rank, [U ] must have pi linearly 
independent rows. Say we have labelled the elements of Pi+1 so that the first 

i rows of [U ] are linearly independent. 

Let A = (aij ) be the pi × pi matrix whose rows are the first pi rows of 
[U ]. (Thus A is a square submatrix of [U ].) Since the rows of A are linearly 
independent, we have 

det(A) = ±a�(1),1 · · ·a�(pi ),pi = 0,∈

a
where the sum is over all permutations λ of 1, . . . , pi. Thus some term 

�(pi),pi of the above sum in nonzero. Since U is order-raising, this ±a�(1),1 · · ·
means that [why?] xk < y�(k) for 1 � k � pi. Hence the map µ : Pi � Pi+1 

defined by µ(xk ) = y�(k) is an order-matching, as desired. 

The case when U is onto rather than one-to-one is proved by a completely 
analogous argument. � 

U

We now want to apply Proposition 4.4 and Lemma 4.5 to the boolean 
algebra Bn. For each 0 � i < n, we need to define a linear transformation 

i : R(Bn)i � R(Bn)i+1, and then prove it has the desired properties. We 
simply define Ui to be the simplest possible order-raising operator, namely, 
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for x √ (Bn)i, let 
Ui(x) = y. (18) 

y∗(Bn)i+1 
y>x 

Note that since (Bn)i is a basis for R(Bn)i, equation (18) does indeed define 
a unique linear transformation Ui : R(Bn)i � R(Bn)i+1. By definition Ui is 
order-raising; we want to show that Ui is one-to-one for i < n/2 and onto for 
i ← n/2. There are several ways to show this using only elementary linear 
algebra; we will give what is perhaps the simplest proof, though it is quite 
tricky. The idea is to introduce “dual” operators Di : R(Bn)i � (Bn)i−1 to 
the Ui’s (D stands for “down”), defined by 

Di(y) = x, (19) 
x∗(Bn)i−1 

x<y 

for all y √ (Bn)i. Let [Ui] denote the matrix of Ui with respect to the bases 
(Bn)i and (Bn)i+1, and similarly let [Di] denote the matrix of Di with respect 
to the bases (Bn)i and (Bn)i−1. A key observation which we will use later is 
that 

[Di+1] = [Ui]
t , (20) 

I
i.e., the matrix [Di+1] is the transpose of the matrix [Ui] [why?]. Now let 
i : R(Bn)i � R(Bn)i denote the identity transformation on R(Bn)i, i.e., 

Ii(u) = u for all u √ R(Bn)i. The next lemma states (in linear algebraic 
terms) the fundamental combinatorial property of Bn which we need. For 
this lemma set Un = 0 and D0 = 0 (the 0 linear transformation between the 
appropriate vector spaces). 

4.6 Lemma. Let 0 � i � n. Then 

Di+1Ui − Ui−1Di = (n − 2i)Ii. (21) 

(Linear transformations are multiplied right-to-left, so AB(u) = A(B(u)).) 

Proof. Let x √ (Bn)i. We need to show that if we apply the left-hand 
side of (21) to x, then we obtain (n − 2i)x. We have 

⎞ � 

� ⎜

Di+1Ui(x) = Di+1 � y
⎝ 

|y|=i+1 
x�y 
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= z. 
|y|=i+1 |z|=i 

x�y z�y 

If x, z √ (Bn)i satisfy x z < i − 1, then there is no y √ (Bn)i+1 such that | → |
x ∩ y and z ∩ y. Hence the coefficient of z in Di+1Ui(x) when it is expanded 
in terms of the basis (Bn)i is 0. If x z = i − 1, then there is one such y,| → |
namely, y = x ≤ z. Finally if x = z then y can be any element of (Bn)i+1 

containing x, and there are n − i such y in all. It follows that 

Di+1Ui(x) = (n − i)x + z. (22) 
|z|=i 

|x�z|=i−1 

By exactly analogous reasoning (which the reader should check), we have for 
x √ (Bn)i that 

Ui−1Di(x) = ix + z. (23) 
|z|=i 

|x�z|=i−1 

Subtracting (23) from (22) yields (Di+1Ui−Ui−1Di)(x) = (n−2i)x, as desired. 

4.7 Theorem. The operator Ui defined above is one-to-one if i < n/2 
and is onto if i ← n/2. 

Proof. Recall that [Di] = [Ui−1]
t . From linear algebra we know that 

a (rectangular) matrix times its transpose is positive semidefinite (or just 
semidefinite for short) and hence has nonnegative (real) eigenvalues. By 
Lemma 4.6 we have 

Di+1Ui = Ui−1Di + (n − 2i)Ii. 

Thus the eigenvalues of Di+1Ui are obtained from the eigenvalues of Ui−1Di 

by adding n − 2i. Since we are assuming that n − 2i > 0, it follows that the 
eigenvalues of Di+1Ui are strictly positive. Hence Di+1Ui is invertible (since 
it has no 0 eigenvalues). But this implies that Ui is one-to-one [why?], as 
desired. 

The case i ← n/2 is done by a “dual” argument (or in fact can be deduced 
directly from the i < n/2 case by using the fact that the poset Bn is “self
dual,” though we will not go into this). Namely, from the fact that 

UiDi+1 = Di+2Ui+1 + (2i + 2 − n)Ii+1 
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we get that UiDi+1 is invertible, so now Ui is onto, completing the proof. � 

Combining Proposition 4.4, Lemma 4.5, and Theorem 4.7, we obtain the 
famous theorem of Sperner. 

4.8 Corollary. The boolean algebra Bn has the Sperner property. 

It is natural to ask whether there is a less indirect proof of Corollary 
4.8. In fact, several nice proofs are known; we give one due to David Lubell, 
mentioned before Definition 4.2. 

Lubell’s proof of Sperner’s theorem. First we count the total number 
of maximal chains Ø = x0 < x1 < < xn = {1, . . . , n} in Bn. There are n· · · 
choices for x1, then n− 1 choices for x2, etc., so there are n! maximal chains 
in all. Next we count the number of maximal chains x0 < x1 < < xi = · · · 
x < < xn which contain a given element x of rank i. There are i choices · · · 
for x1, then i− 1 choices for x2, up to one choice for xi. Similarly there are 
n− i choices for xi+1, then n − 2 choices for xi+2, etc., up to one choice for 
xn. Hence the number of maximal chains containing x is i!(n− i)!. 

Now let A be an antichain. If x √ A, then let Cx be the set of maximal 
chains of B which contain x. Since A is an antichain, the sets Cx, x √ An 

are pairwise disjoint. Hence 
� � 
|

x�A 

Cx| = 
x�A 

|Cx| 
� 

= 
x�A 

(α(x))!(n− α(x))! 

Since the total number of maximal chains in the Cx’s cannot exceed the total 
number n! of maximal chains in Bn, we have 

(α(x))!(n− α(x))! � n! 
x�A 

Divide both sides by n! to obtain 

� 1 
� � � 1. n 

x�A λ(x) 
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Since n is maximized when i = ⊂n/2⊆, we have 
i 

1 1 
n n 

≥n/2∈ λ(x) 

for all x √ A (or all x √ Bn). Thus 

� 1 
� � � 1,n 

x�A ≥n/2∈ 

or equivalently, 
n 

.|A| � ⊂n/2⊆ 
Since n is the size of the largest level of Bn, it follows that Bn is Sperner. 

≥n/2∈ 

In view of the above elegant proof of Lubell, the reader may be wondering 
what was the point of giving a rather complicated and indirect proof using 
linear algebra. Admittedly, if all we could obtain from the linear algebra 
machinery we have developed was just another proof of Sperner’s theorem, 
then it would have been hardly worth the effort. But in the next section we 
will show how Theorem 4.7, when combined with a little finite group theory, 
can be used to obtain many interesting combinatorial results for which simple, 
direct proofs are not known. 
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