5 Group actions on boolean algebras.

Let us begin by reviewing some facts from group theory. Suppose that X is an n-element set and that G is a group. We say that G acts on the set X if for every element π of G we associate a permutation (also denoted π) of X, such that for all $x \in X$ and $\pi, \sigma \in G$ we have

$$
\pi(\sigma(x))=(\pi \sigma)(x)
$$

Thus [why?] an action of G on X is the same as a homomorphism $\varphi: G \rightarrow$ \mathfrak{S}_{X}, where \mathfrak{S}_{X} denotes the symmetric group of all permutations of X. We sometimes write $\pi \cdot x$ instead of $\pi(x)$.
5.1 Example. (a) Let the real number α act on the $x y$-plane by rotation counterclockwise around the origin by an angle of α radians. It is easy to check that this defines an action of the group \mathbb{R} of real numbers (under addition) on the $x y$-plane.
(b) Now let $\alpha \in \mathbb{R}$ act by translation by a distance α to the right (i.e., adding $(\alpha, 0))$. This yields a completely different action of \mathbb{R} on the $x y$-plane.
(c) Let $X=\{a, b, c, d\}$ and $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{(0,0),(0,1),(1,0),(1,1)\}$. Let G act as follows:

$$
\begin{aligned}
& (0,1) \cdot a=b, \quad(0,1) \cdot b=a, \quad(0,1) \cdot c=c, \quad(0,1) \cdot d=d \\
& (1,0) \cdot a=a, \quad(1,0) \cdot b=b, \quad(1,0) \cdot c=d, \quad(1,0) \cdot d=c .
\end{aligned}
$$

The reader should check that this does indeed define an action. In particular, since $(1,0)$ and $(0,1)$ generate G, we don't need to define the action of $(0,0)$ and $(1,1)$ - they are uniquely determined.
(d) Let X and G be as in (c), but now define the action by

$$
\begin{array}{ll}
(0,1) \cdot a=b, & (0,1) \cdot b=a, \\
(1,0) \cdot a=c, & (1,0) \cdot b=d, \\
(1,0) \cdot c=a, & (0,1) \cdot d=c \\
(1,0) \cdot d=b .
\end{array}
$$

Again one can check that we have an action of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ on $\{a, b, c, d\}$.

Recall what is meant by an orbit of the action of a group G on a set X. Namely, we say that two elements x, y of X are G-equivalent if $\pi(x)=y$ for some $\pi \in G$. The relation of G-equivalence is an equivalence relation, and the equivalence classes are called orbits. Thus x and y are in the same orbit if $\pi(x)=y$ for some $\pi \in G$. The orbits form a partition of X, i.e, they are pairwise-disjoint, nonempty subsets of X whose union is X. The orbit containing x is denoted $G x$; this is sensible notation since $G x$ consists of all elements $\pi(x)$ where $\pi \in G$. Thus $G x=G y$ if and only if x and y are G-equivalent (i.e., in the same G-orbit). The set of all G-orbits is denoted X / G.
5.2 Example. (a) In Example 5.1(a), the orbits are circles with center $(0,0)$ (including the degenerate circle whose only point is $(0,0))$.
(b) In Example 5.1(b), the orbits are horizontal lines. Note that although in (a) and (b) the same group G acts on the same set X, the orbits are different.
(c) In Example 5.1(c), the orbits are $\{a, b\}$ and $\{c, d\}$.
(d) In Example 5.1(d), there is only one orbit $\{a, b, c, d\}$. Again we have a situation in which a group G acts on a set X in two different ways, with different orbits.

We wish to consider the situation where $X=B_{n}$, the boolean algebra of rank n (so $\left|B_{n}\right|=2^{n}$). We begin by defining an automorphism of a poset P to be an isomorphism $\varphi: P \rightarrow P$. (This definition is exactly analogous to the definition of an automorphism of a group, ring, etc.) The set of all automorphisms of P forms a group, denoted $\operatorname{Aut}(P)$ and called the automorphism group of P, under the operation of composition of functions (just as is the case for groups, rings, etc.)

Now consider the case $P=B_{n}$. Any permutation π of $\{1, \ldots, n\}$ acts on B_{n} as follows: If $x=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \in B_{n}$, then

$$
\begin{equation*}
\pi(x)=\left\{\pi\left(i_{1}\right), \pi\left(i_{2}\right), \ldots, \pi\left(i_{k}\right)\right\} \tag{24}
\end{equation*}
$$

This action of π on B_{n} is an automorphism [why?]; in particular, if $|x|=i$, then also $|\pi(x)|=i$. Equation (24) defines an action of the symmetric group
\mathfrak{S}_{n} of all permutations of $\{1, \ldots, n\}$ on B_{n} [why?]. (In fact, it is not hard to show that every automorphism of B_{n} is of the form (24) for $\pi \in \mathfrak{S}_{n}$.) In particular, any subgroup G of \mathfrak{S}_{n} acts on B_{n} via (24) (where we restrict π to belong to G). In what follows this action is always meant.
5.3 Example. Let $n=3$, and let G be the subgroup of \mathfrak{S}_{3} with elements e and (1,2). Here e denotes the identity permutation, and (using disjoint cycle notation) $(1,2)$ denotes the permutation which interchanges 1 and 2 , and fixes 3 . There are six orbits of G (acting on B_{3}). Writing e.g. 13 as short for $\{1,3\}$, the six orbits are $\{\varnothing\},\{1,2\},\{3\},\{12\},\{13,23\}$, and \{123\}.

We now define the class of posets which will be of interest to us here. Later we will give some special cases of particular interest.
5.4 Definition. Let G be a subgroup of \mathfrak{S}_{n}. Define the quotient poset B_{n} / G as follows: The elements of B_{n} / G are the orbits of G. If \mathcal{O} and \mathcal{O}^{\prime} are two orbits, then define $\mathcal{O} \leq \mathcal{O}^{\prime}$ in B_{n} / G if there exist $x \in \mathcal{O}$ and $y \in \mathcal{O}^{\prime}$ such that $x \leq y$ in B_{n}. (It's easy to check that this relation \leq is indeed a partial order.)
5.5 Example. (a) Let $n=3$ and G be the group of order two generated by the cycle $(1,2)$, as in Example 5.2. Then the Hasse diagram of B_{3} / G is shown below, where each element (orbit) is labeled by one of its elements.

(b) Let $n=5$ and G be the group of order five generated by the cycle $(1,2,3,4,5)$. Then B_{5} / G has Hasse diagram

One simple property of a quotient poset B_{n} / G is the following.
5.6 Proposition. The quotient poset B_{n} / G defined above is graded of rank n and rank-symmetric.

Proof. We leave as an exercise the easy proof that B_{n} / G is graded of rank n, and that the rank of an element \mathcal{O} of B_{n} / G is just the rank in B_{n} of any of the elements x of \mathcal{O}. Thus the number of elements $p_{i}\left(B_{n} / G\right)$ of rank i is equal to the number of orbits $\mathcal{O} \in\left(B_{n}\right)_{i} / G$. If $x \in B_{n}$, then let \bar{x} denote the set-theoretic complement of x, i.e.,

$$
\bar{x}=\{1, \ldots, n\}-x=\{1 \leq i \leq n: i \notin x\} .
$$

Then $\left\{x_{1}, \ldots, x_{j}\right\}$ is an orbit of i-element subsets of $\{1, \ldots, n\}$ if and only if $\left\{\bar{x}_{1}, \ldots, \bar{x}_{j}\right\}$ is an orbit of $(n-i)$-element subsets [why?]. Hence $\left|\left(B_{n}\right)_{i} / G\right|=$ $\left|\left(B_{n}\right)_{n-i} / G\right|$, so B_{n} / G is rank-symmetric.

Let $\pi \in \mathfrak{S}_{n}$. We associate with π a linear transformation (still denoted π)
$\pi: \mathbb{R}\left(B_{n}\right)_{i} \rightarrow \mathbb{R}\left(B_{n}\right)_{i}$ by the rule

$$
\pi\left(\sum_{x \in\left(B_{n}\right)_{i}} c_{x} x\right)=\sum_{x \in\left(B_{n}\right)_{i}} c_{x} \pi(x)
$$

where each c_{x} is a real number. (This defines an action of \mathfrak{S}_{n}, or of any subgroup G of \mathfrak{S}_{n}, on the vector space $\mathbb{R}\left(B_{n}\right)_{i}$.) The matrix of π with
respect to the basis $\left(B_{n}\right)_{i}$ is just a permutation matrix, i.e., a matrix with one 1 in every row and column, and 0's elsewhere. We will be interested in elements of $\mathbb{R}\left(B_{n}\right)_{i}$ which are fixed by every element of a subgroup G of \mathfrak{S}_{n}. The set of all such elements is denoted $\mathbb{R}\left(B_{n}\right)_{i}^{G}$, so

$$
\mathbb{R}\left(B_{n}\right)_{i}^{G}=\left\{v \in \mathbb{R}\left(B_{n}\right)_{i}: \pi(v)=v \text { for all } \pi \in G\right\} .
$$

5.7 Lemma. A basis for $\mathbb{R}\left(B_{n}\right)_{i}^{G}$ consists of the elements

$$
v_{\mathcal{O}}:=\sum_{x \in \mathcal{O}} x
$$

where $\mathcal{O} \in\left(B_{n}\right)_{i} / G$, the set of G-orbits for the action of G on $\left(B_{n}\right)_{i}$.
Proof. First note that if \mathcal{O} is an orbit and $x \in \mathcal{O}$, then by definition of orbit we have $\pi(x) \in \mathcal{O}$ for all $\pi \in G$. Since π permutes the elements of $\left(B_{n}\right)_{i}$, it follows that π permutes the elements of \mathcal{O}. Thus $\pi\left(v_{\mathcal{O}}\right)=v_{\mathcal{O}}$, so $v_{\mathcal{O}} \in \mathbb{R}\left(B_{n}\right)_{i}^{G}$. It is clear that the $v_{\mathcal{O}}$'s are linearly independent since any $x \in\left(B_{n}\right)_{i}$ appears with nonzero coefficient in exactly one $v_{\mathcal{O}}$.

It remains to show that the $v_{\mathcal{O}}$'s span $\mathbb{R}\left(B_{n}\right)_{i}^{G}$, i.e., any $v=\sum_{x \in\left(B_{n}\right)_{i}} c_{x} x \in$ $\mathbb{R}\left(B_{n}\right)_{i}^{G}$ can be written as a linear combination of $v_{\mathcal{O}}$'s. Now a vector $v \in \mathbb{R}\left(B_{n}\right)_{i}$ will belong to $\mathbb{R}\left(B_{n}\right)_{i}^{G}$ if and only if its coefficients are constant on G-orbits and hence if and only if it is a linear combination of $v_{\mathcal{O}}$'s for the various G-orbits \mathcal{O}.

Now let us consider the effect of applying the order-raising operator U_{i} to an element v of $\mathbb{R}\left(B_{n}\right)_{i}^{G}$.
5.8 Lemma. If $v \in \mathbb{R}\left(B_{n}\right)_{i}^{G}$, then $U_{i}(v) \in \mathbb{R}\left(B_{n}\right)_{i+1}^{G}$.

Proof. Note that since $\pi \in G$ is an automorphism of B_{n}, we have $x<y$ in B_{n} if and only if $\pi(x)<\pi(y)$ in B_{n}. It follows [why?] that if $x \in\left(B_{n}\right)_{i}$ then

$$
U_{i}(\pi(x))=\pi\left(U_{i}(x)\right)
$$

Since U_{i} and π are linear transformations, it follows by linearity that $U_{i} \pi(u)=$ $\pi U_{i}(u)$ for all $u \in \mathbb{R}\left(B_{n}\right)_{i}$. (In other words, $U_{i} \pi=\pi U_{i}$.) Then

$$
\pi\left(U_{i}(v)\right)=U_{i}(\pi(v))
$$

$$
=U_{i}(v)
$$

so $U_{i}(v) \in \mathbb{R}\left(B_{n}\right)_{i+1}^{G}$, as desired.
We come to the main result of this section, and indeed our main result on the Sperner property.
5.9 Theorem. Let G be a subgroup of \mathfrak{S}_{n}. Then the quotient poset B_{n} / G is graded of rank n, rank-symmetric, rank-unimodal, and Sperner.

Proof. Let $P=B_{n} / G$. We have already seen in Proposition 5.6 that P is graded of rank n and rank-symmetric. We want to define order-raising operators $\hat{U}_{i}: \mathbb{R} P_{i} \rightarrow \mathbb{R} P_{i+1}$ and order-lowering operators $\hat{D}_{i}: \mathbb{R} P_{i} \rightarrow \mathbb{R} P_{i-1}$. Let us first consider just \hat{U}_{i}. The idea is to identify the basis element $v_{\mathcal{O}}$ of $\mathbb{R} B_{n}^{G}$ with the basis element \mathcal{O} of $\mathbb{R} P$, and to let $\hat{U}_{i}: \mathbb{R} P_{i} \rightarrow \mathbb{R} P_{i+1}$ correspond to the usual order-raising operator $U_{i}: \mathbb{R}\left(B_{n}\right)_{i} \rightarrow \mathbb{R}\left(B_{n}\right)_{i+1}$. More precisely, suppose that the order-raising operator U_{i} for B_{n} given by (18) satisfies

$$
\begin{equation*}
U_{i}\left(v_{\mathcal{O}}\right)=\sum_{\mathcal{O}^{\prime} \in\left(B_{n}\right)_{i+1} / G} c_{\mathcal{O}, \mathcal{O}^{\prime}} v_{\mathcal{O}^{\prime}} \tag{25}
\end{equation*}
$$

where $\mathcal{O} \in\left(B_{n}\right)_{i} / G$. (Note that by Lemma 5.8, $U_{i}\left(v_{\mathcal{O}}\right)$ does indeed have the form given by (25).) Then define the linear operator $\hat{U}_{i}: \mathbb{R}\left(\left(B_{n}\right)_{i} / G\right) \rightarrow$ $\mathbb{R}\left(\left(B_{n}\right)_{i} / G\right)$ by

$$
\hat{U}_{i}(\mathcal{O})=\sum_{\mathcal{O}^{\prime} \in\left(B_{n}\right)_{i+1} / G} c_{\mathcal{O}, \mathcal{O}^{\prime}} \mathcal{O}^{\prime}
$$

We claim that \hat{U}_{i} is order-raising. We need to show that if $c_{\mathcal{O}, \mathcal{O}^{\prime}} \neq 0$, then $\mathcal{O}^{\prime}>\mathcal{O}$ in B_{n} / G. Since $v_{\mathcal{O}^{\prime}}=\sum_{x^{\prime} \in \mathcal{O}^{\prime}} x^{\prime}$, the only way $c_{\mathcal{O}, \mathcal{O}^{\prime}} \neq 0$ in (25) is for some $x^{\prime} \in \mathcal{O}^{\prime}$ to satisfy $x^{\prime}>x$ for some $x \in \mathcal{O}$. But this is just what it means for $\mathcal{O}^{\prime}>\mathcal{O}$, so \hat{U}_{i} is order-raising.

Now comes the heart of the argument. We want to show that \hat{U}_{i} is one-to-one for $i<n / 2$. Now by Theorem 4.7, U_{i} is one-to-one for $i<n / 2$. Thus the restriction of U_{i} to the subspace $\mathbb{R}\left(B_{n}\right)_{i}^{G}$ is one-to-one. (The restriction of a one-to-one function is always one-to-one.) But U_{i} and \hat{U}_{i} are exactly the same transformation, except for the names of the basis elements on which they act. Thus \hat{U}_{i} is also one-to-one for $i<n / 2$.

An exactly analogous argument can be applied to D_{i} instead of U_{i}. We obtain one-to-one order-lowering operators $\hat{D}_{i}: \mathbb{R}\left(B_{n}\right)_{i}^{G} \rightarrow \mathbb{R}\left(B_{n}\right)_{i-1}^{G}$ for $i>n / 2$. It follows from Proposition 4.4, Lemma 4.5, and (20) that B_{n} / G is rank-unimodal and Sperner, completing the proof.

We will consider two interesting applications of Theorem 5.9. For our first application, we let $n=\binom{m}{2}$ for some $m \geq 1$, and let $M=\{1, \ldots, m\}$. Let $X=\binom{M}{2}$, the set of all two-element subsets of M. Think of the elements of X as (possible) edges of a graph with vertex set M. If B_{X} is the boolean algebra of all subsets of X (so B_{X} and B_{n} are isomorphic), then an element x of B_{X} is a collection of edges on the vertex set M, in other words, just a simple graph on M. Define a subgroup G of \mathfrak{S}_{X} as follows: Informally, G consists of all permutations of the edges $\binom{M}{2}$ that are induced from permutations of the vertices M. More precisely, if $\pi \in \mathfrak{S}_{m}$, then define $\hat{\pi} \in \mathfrak{S}_{X}$ by $\hat{\pi}(\{i, j\})=\{\pi(i), \pi(j)\}$. Thus G is isomorphic to \mathfrak{S}_{m}.

When are two graphs $x, y \in B_{X}$ in the same orbit of the action of G on B_{X} ? Since the elements of G just permute vertices, we see that x and y are in the same orbit if we can obtain x from y by permuting vertices. This is just what it means for two simple graphs x and y to be isomorphic - they are the same graph except for the names of the vertices (thinking of edges as pairs of vertices). Thus the elements of B_{X} / G are isomorphism classes of simple graphs on the vertex set M. In particular, $\#\left(B_{X} / G\right)$ is the number of nonisomorphic m-vertex simple graphs, and $\#\left(\left(B_{X} / G\right)_{i}\right)$ is the number of nonisomorphic such graphs with i edges. We have $x \leq y$ in B_{X} / G if there is some way of labelling the vertices of x and y so that every edge of x is an edge of y. Equivalently, some spanning subgraph of y (i.e., a subgraph of y with all the vertices of y) is isomorphic to x. Hence by Theorem 5.9 there follows the following result, which is by no means obvious and has no known non-algebraic proof.
5.10 Theorem. (a) Fix $m \geq 1$. Let p_{i} be the number of nonisomorphic simple graphs with m vertices and i edges. Then the sequence $p_{0}, p_{1}, \ldots, p_{\binom{m}{2}}$ is symmetric and unimodal.
(b) Let T be a collection of nonisomorphic simple graphs with m vertices such that no element of T is isomorphic to a subset of another element of
T. Then $|T|$ is maximized by taking T to consist of all nonisomorphic simple graphs with $\left\lfloor\frac{1}{2}\binom{m}{2}\right\rfloor$ edges.

Our second example of the use of Theorem 5.9 is somewhat more subtle and will be the topic of the next section.

