18.318 (Spring 2006): Problem Set \#5

due May 3, 2006

1. [5] Show that the only r-differential lattices are direct products of Y^{\prime} 's and Z_{j} 's. In particular, the only 1-differential lattices are Y and Z_{1}.
2. [5] Let P be an r-differential poset. Show that for all $i \geq 0$,

$$
\#\left(Y^{r}\right)_{i} \leq \# P_{i} \leq\left(Z_{r}\right)_{i}
$$

where Y denotes Young's lattice and Z_{r} the Fibonacci r-differential lattice.
3. $[2+]$ Let P be an r-differential poset, and let $\kappa(n \rightarrow n+k \rightarrow n)$ be the number of closed Hasse walks in P that start at rank n, go up to rank $n+k$ in k steps, and then go back down to the original starting vertex at rank n in k steps. For instance, it was shown in class that $\kappa(0 \rightarrow k \rightarrow 0)=r^{k} k$!. Show that for fixed $k \geq 0$,

$$
\sum_{n \geq 0} \kappa(n \rightarrow n+k \rightarrow n) q^{n}=r^{k} k!(1-q)^{-k} F(P, q),
$$

where $F(P, q)$ denotes the rank-generating function of P.
Hint. Begin with

$$
\kappa(n \rightarrow n+k \rightarrow n)=\sum_{x \in P_{n}}\left\langle D^{k} U^{k} x, x\right\rangle .
$$

4. [2] Let P be an r-differential poset. Find the eigenvalues and eigenvectors of the linear transformation $D U: \mathbb{Q} P_{n} \rightarrow \mathbb{Q} P_{n}$.
5. [2-] Let U and D be linear transformations on some vector space such that $D U-U D=r I$. A linear transformation such as $U U D U D D$ which is a product of U's and D's is called balanced if it contains the same number of U 's as D 's. Show that any two balanced linear transformations commute.
6. [2+] Let P be an r-differential poset, and let $\kappa_{2 k}(n)$ denote the total number of closed Hasse walks of length $2 k$ starting at P_{n}. Show that for fixed $k \geq 0$,

$$
\sum_{n \geq 0} \kappa_{2 n} q^{n}=\frac{(2 k)!r^{k}}{2^{k} k!}\left(\frac{1+q}{1-q}\right)^{k} F(P, q)
$$

7. (a) $[2+]$ Let P be an r-differential poset. Let $\left.\mathcal{H}\left(P_{[} i, j\right]\right)$ denote the Hasse diagram of P restricted to $P_{i} \cup P_{i+1} \cup \cdots \cup P_{j}$, considered as an (undirected) graph. Let $\left.\operatorname{Ch} \mathcal{H}\left(P_{[} i, j\right]\right)=\operatorname{det}(x I-A)$, the (monic) characteristic polynomial of the adjacency matrix A of $\left.\mathcal{H}\left(P_{[} i, j\right]\right)$. Show that

$$
\left.\operatorname{Ch} \mathcal{H}\left(P_{[j}-2, j\right]\right)=x^{\Delta p_{j}}\left(x^{2}-r\right)^{\Delta p_{j-1}} \prod_{s=2}^{j}\left(x^{3}-r(2 s-1) x\right)^{\Delta p_{j-s}},
$$

where $p_{i}=\# P_{i}$ and $\Delta p_{i}=p_{i}-p_{i-1}$.
(b) [3-] Generalize to $\left.\mathrm{Ch} \mathcal{H}\left(P_{[j}-k, j\right]\right)$ for any $k \geq 0$. Express your answer in terms of the characteristic polynomials of certain matrices depending only on j, k and r, none larger than $(k+1) \times(k+1)$.
8. The elements x of Z_{1} can be labelled in a simple way by sequences $\alpha(x)$ of 1's and 2's, so that the rank of an element labelled $a_{1} \cdots a_{k}$ is $a_{1}+\cdots+a_{k}$. Namely, first label the bottom element $\hat{0}$ by \emptyset (the empty sequence), then the unique element covering $\hat{0}$ by 1 , and then the two elements of rank 2 by 11 and 2 . Now assume that we have labelled all elements up to rank n. If x has rank $n+1$, then let y be the meet of all elements that x covers. Let $k=\operatorname{rank}(x)-\operatorname{rank}(y)$. It is easy to see that $k=1$ or $k=2$. Define $\alpha(x)=k \alpha(y)$, i.e, preprend k to the label of y.

There is a another poset F whose elements are also labelled by sequences of 1's and 2's, viz., order all such sequences componentwise (regarding the sequences as terminating in infinitely many 0's). For instance, $\emptyset<1<2<21<211<212<2121<2221<22211$ is a saturated chain in F.

(a) [3-] Suppose that $x \in Z_{1}$ and $x^{\prime} \in F$ have the same labels. Show that $e(x)=e\left(x^{\prime}\right)$, where in general $e(y)$ denotes the number of saturated chains from $\hat{0}$ to y.
(b) [3] More generally, show that for any i, the number of chains $\hat{0}<x_{1}<\cdots<x_{i}=x$ of length i from $\hat{0}$ to x in Z_{1} is the same as the number of such chains from $\hat{0}$ to x^{\prime} in F.
9. [5-] Suppose that A and B are two commuting $g \times g$ nilpotent matrices. Assume that A and B are jointly generic, i.e., the nonzero entries of A and B together are algebraically independent over \mathbb{Q}. What can be said about the invariants (Jordan block sizes) of A, B, and $A B$, in terms of the labelled acyclic digraphs corresponding to A and B ? What about the special case $A B=B A=0$? (I don't know whether this problem has received any attention.)
10. [3-] Show that the number of $n \times n$ nilpotent matrices over \mathbb{F}_{q} is equal to $q^{n(n-1)}$.

