18.318 (Spring 2006): Problem Set \#4

due April 19, 2006

1. [2] Let P_{n} be the set of all planted forests (i.e., graphs for which every component is a rooted tree) on the vertex set $[n]$. Let $u v$ be an edge of a forest $F \in P_{n}$ such that u is closer to the root of its component than v. Define F to cover F^{\prime} if F^{\prime} is obtained from F by removing the edge $u v$ and rooting the new tree containing v at v. This definition of cover defines the cover relation of a partial ordering of P_{n}. Show that P_{n} has the Sperner property. (Hint. Mimic Lubell's proof that B_{n} is Sperner.)
2. (a) [3+] Find an explicit injection $\mu: L(m, n)_{i} \rightarrow L(m, n)_{i+1}$ for $0 \leq i<\frac{1}{2} m n$.
(b) [5] Find μ as in (a) such that μ is also an order-matching.
(c) [5] We say that a graded rank-symmetric poset P of rank n has a symmetric chain decomposition if we can write P as a disjoint union of saturated chains C, such that each C starts at some P_{i} and ends at P_{n-i}. Show that $L(m, n)$ has a symmetric chain decomposition.
3. Let q be a prime power, and let V be an n-dimensional vector space over \mathbb{F}_{q}. Let $B_{n}(q)$ denote the poset of all subspaces of V, ordered by inclusion. It's easy to see that $B_{n}(q)$ is graded of rank n, the rank of a subspace of V being its dimension.
(a) [2-] Show that the number of elements of $B_{n}(q)$ of rank k is given by the q-binomial coefficient

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)}
$$

(One way to do this is to count in two ways the number of k tuples $\left(v_{1}, \ldots, v_{k}\right)$ of linearly independent elements from $\mathbb{F}_{q}^{n}:(1)$ first choose v_{1}, then v_{2}, etc., and (2) first choose the subspace W spanned by v_{1}, \ldots, v_{k}, and then choose v_{1}, v_{2}, etc.)
(b) $[1+]$ Show that $B_{n}(q)$ is rank-symmetric. (The easiest way is to use (a).)
(c) $[1+]$ Show that every element $x \in B_{n}(q)_{k}$ covers $[k]=1+q+$ $\cdots+q^{k-1}$ elements and is covered by $[n-k]=1+q+\cdots+q^{n-k-1}$ elements.
(d) [2-] Define operators $U_{i}: \mathbb{R} B_{n}(q)_{i} \rightarrow \mathbb{R} B_{n}(q)_{i+1}$ and $D_{i}: \mathbb{R} B_{n}(q)_{i} \rightarrow$ $\mathbb{R} B_{n}(q)_{i-1}$ by

$$
\begin{aligned}
& U_{i}(x)=\sum_{\substack{y \in B_{n}(q)_{i+1} \\
y>x}} y \\
& D_{i}(x)=\sum_{\substack{z \in B_{n}(q)_{i-1} \\
z<x}} z .
\end{aligned}
$$

Show that

$$
D_{i+1} U_{i}-U_{i-1} D_{i}=([n-i]-[i]) I_{i} .
$$

(e) [2-] Deduce that $B_{n}(q)$ is rank-unimodal and Sperner.
(f) [5] Let $0 \leq i<n / 2$. Find an explicit order-matching $\mu: B_{n}(q)_{i} \rightarrow$ $B_{n}(q)_{i+1}$.
4. Let $M(n)$ be the set of all subsets of $[n]$, with the ordering $A \leq B$ if the elements of A are $a_{1}>a_{2}>\cdots>a_{j}$ and the elements of B are $b_{1}>b_{2}>\cdots>b_{k}$, where $j \leq k$ and $a_{i} \leq b_{i}$ for $1 \leq i \leq j$. (The empty set \emptyset is the bottom element of $M(n)$.)
(a) $[1+]$ Draw the Hasse diagrams (with vertices labelled by the subsets they represent) of $M(1), M(2), M(3)$, and $M(4)$. Bonus: Also do $M(5)$.
(b) $[1+]$ You may assume that $M(n)$ is graded of rank $\binom{n+1}{2}$, with $\rho\left(\left\{a_{1}, \ldots, a_{j}\right\}\right)=\sum a_{i}$. (This is very easy to prove.) Show that the rank-generating function of $M(n)$ is given by

$$
F(M(n), q)=(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right) .
$$

(c) $[2+]$ Define linear transformations

$$
U_{i}: \mathbb{R} M(n)_{i} \rightarrow \mathbb{R} M(n)_{i+1}, \quad D_{i}: \mathbb{R} M(n)_{i} \rightarrow \mathbb{R} M(n)_{i-1}
$$

by

$$
\begin{aligned}
U_{i}(x) & =\sum_{\substack{y \in M(n)_{i+1} \\
x<y}} y, x \in M(n)_{i} \\
D_{i}(x) & =\sum_{\substack{v \in M(n)_{i} \\
v<x}} c(v, x) v, x \in M(n),
\end{aligned}
$$

where the coefficient $c(v, x)$ is defined as follows. Let the elements of v be $a_{1}>\cdots>a_{j}>0$ and the elements of x be $b_{1}>\cdots>$ $b_{k}>0$. Since x covers v, there is a unique r for which $a_{r}=b_{r}-1$ (and $a_{k}=b_{k}$ for all other k). In the case $b_{r}=1$ we set $a_{r}=0$. (E.g., if x is given by $5>4>1$ and v by $5>4$, then $r=3$ and $a_{3}=0$.) Set

$$
c(v, x)=\left\{\begin{aligned}
\binom{n+1}{2}, & \text { if } a_{r}=0 \\
\left(n-a_{r}\right)\left(n+a_{r}+1\right), & \text { if } a_{r}>0
\end{aligned}\right.
$$

Show that

$$
D_{i+1} U_{i}-U_{i-1} D_{i}=\left(\binom{n+1}{2}-2 i\right) I_{i}
$$

where I_{i} denotes the identity linear transformation on $\mathbb{R} M(n)_{i}$.
(d) $[2+]$ Show that $M(n)$ is rank-symmetric, rank-unimodal, and Sperner. In particular, the polynomial $(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right)$ has unimodal coefficients.
Hint. You may assume the following result from linear algebra. For two proofs, see pp. 331-333 of Selected Papers on Algebra (S. Montgomery, et al., eds.), Mathematical Association of America, 1977.

Theorem. Let V and W be finite-dimensional vector spaces over a field. Let $A: V \rightarrow W$ and $B: W \rightarrow V$ be linear transformations. Then

$$
x^{\operatorname{dim} V} \operatorname{det}(A B-x I)=x^{\operatorname{dim} W} \operatorname{det}(B A-x I) .
$$

In other words, $A B$ and $B A$ have the same nonzero eigenvalues.
(e) [2] Let S be a finite subset of \mathbb{R}^{+}and $\alpha \in \mathbb{R}^{+}$. Define

$$
f(S, \alpha)=\#\left\{T \subseteq S: \sum_{t \in T} t=\alpha\right\}
$$

the total number of subsets of S whose elements sum to α. (The sum of the elements of the empty set \emptyset is taken to be 0 .) Show that if $S \in\binom{\mathbb{R}^{+}}{n}$ and $\alpha \in \mathbb{R}^{+}$, then

$$
f(S, \alpha) \leq f\left([n],\left\lfloor\frac{1}{2}\binom{n+1}{2}\right\rfloor\right)
$$

(f) $[1+]$ Let

$$
h(n)=\max f(S, \alpha),
$$

where the maximum is taken over all n-element subsets S of \mathbb{R}^{+} and all $\alpha \in \mathbb{R}^{+}$. Show that $h(n)$ is equal to the coefficient of $q^{\left\lfloor\frac{1}{2}\binom{n+1}{2}\right\rfloor}$ in the polynomial $(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right)$.
(g) [5] Find an explicit injection (or even better, an order-matching) $M(n)_{i} \rightarrow M(n)_{i+1}$ for $0 \leq i<\frac{1}{2}\binom{n+1}{2}$.
5. [2+] Let G be a subgroup of \mathfrak{S}_{n}. Show that the rank-generating function of B_{n} / G is given by

$$
F\left(B_{n} / G, q\right)=\frac{1}{\# G} \sum_{\pi \in G} \prod_{C}\left(1+q^{\# C}\right)
$$

where C ranges over all cycles in the disjoint cycle decomposition of π. For instance, if $\pi=(1,6,9,2)(3)(4,7)(5,8)$, then

$$
\prod_{C}\left(1+q^{\# C}\right)=(1+q)\left(1+q^{2}\right)^{2}\left(1+q^{4}\right)
$$

Hint. Use Burnside's lemma, which states that if H is any group of permutations of a finite set, then the number of orbits of H is equal to the average number of fixed points of elements of H.
6. (a) [3-] Let $P=P_{0} \cup P_{1} \cup \cdots \cup P_{n}$ be a finite rank-symmetric, rankunimodal poset that is graded of rank n. Let $p_{i}=\# P_{i}$ as usual. Show that the following three conditions are equivalent:
(i) For all $k \geq 1$, the largest union of k antichains of P is obtained by taking the union of the largest k ranks (or levels) of P.
(ii) For all $0 \leq i<n / 2$, there exist p_{i} pairwise disjoint saturated chains from P_{i} to P_{n-i}.
(iii) For $0 \leq i<n$ there exist order-raising operators $\varphi_{i}: \mathbb{R} P_{i} \rightarrow$ $\mathbb{R} P_{i+1}$ such that for all $0 \leq j<n / 2$ the composite linear transformation

$$
\varphi_{n-j-1} \varphi_{n-j-2} \cdots \varphi_{j+1} \varphi_{j}: \mathbb{R} P_{j} \rightarrow \mathbb{R} P_{n-j}
$$

is a bijection.
Hint. For (iii) \Rightarrow (ii) use the Cauchy-Binet theorem.
(b) $[2+]$ Show that the above conditions hold for the quotient posets B_{n} / G, where G is a subgroup of \mathfrak{S}_{n}.
(c) [2] Give an example of a poset satisfying the conditions (i)-(iii) above that does not have a symmetric chain decomposition (as defined in Exercise 2(c)).
7. (a) [3+] Let $L\left(n_{1}, \ldots, n_{k}\right)$ denote the lattice of order ideals of $\boldsymbol{n}_{\mathbf{1}} \times$ $\cdots \times \boldsymbol{n}_{\boldsymbol{k}}$, where \boldsymbol{n} denotes an n-element chain (agreeing with our previous notation $L(m, n)$). It is easy to see that $L\left(n_{1}, \ldots, n_{k}\right)$ is rank-symmetric. By constructing suitable order-raising and lowering operators show that $L(m, n, k)$ is rank-unimodal and Sperner.
(b) [5] Show that $L(m, n, k, h)$ is rank-unimodal and Sperner.
8. $[2+]$ Show that the polynomials

$$
\left[\begin{array}{c}
2 n \\
n
\end{array}\right] \pm(1+q)\left(1+q^{3}\right)\left(1+q^{5}\right) \cdots\left(1+q^{2 n-1}\right)
$$

have unimodal coefficients.
Hint. We constructed order-raising operators

$$
U_{i}: \mathbb{R} L(n, n)_{i} \rightarrow \mathbb{R} L(n, n)_{i+1}
$$

as "quotients" of those on $\left(B_{n^{2}}\right)_{i}$. Consider in addition the nontrivial automorphism of $L(n, n)$.
9. (a) $[3+]$ Let A denote the adjacency matrix of the Hasse diagram of $L(m, n)$ (considered as a graph). In other words, the rows and columns of A are indexed by the elements of $L(m, n)$, and

$$
A_{\lambda \mu}= \begin{cases}1, & \text { if } \lambda \text { covers } \mu \text { or } \mu \text { covers } \lambda \text { in } L(m, n) \\ 0, & \text { otherwise }\end{cases}
$$

Show that when the characteristic polynomial $\operatorname{det}(x A-I)$ is factored over \mathbb{Q}, the degree of every irreducible factor divides

$$
\frac{1}{2} \phi(2(m+n+1)),
$$

where ϕ denotes the Euler phi-function.
(b) [5] For what m and n is A invertible? More strongly, find the rank of A.
10. [5] Investigate when B_{n} / G is a lattice or distributive lattice. E.g., if B_{n} / G is a distributive lattice, then is it isomorphic to a product of $L(i, j)$'s? Are there any examples of B_{n} / G being a nondistributive lattice besides the example given in class when $n=6$?

