## HOMEWORK 6 (18.315, FALL 2005)

1) Let $P_{n}$ be a polytope of all $n \times n$ nonnegative real matrices with row and column sums 1 .
a) Prove that vertices of $P_{n}$ correspond to permutations $\sigma \in S_{n}$.
b) Prove that the edges correspond to permutations which differ by a cycle, i.e. $\left(v_{\sigma}, v_{\omega}\right)$ is an edge if and only if $\omega^{-1} \sigma$ is a cycle in $S_{n}$.
c) Let $\Gamma_{n}$ be the graph of $P_{n}$ described in b). Conclude from b) that diameter of the graph of $P_{n}$ is two.
d) Prove that $\Gamma_{n}$ contains a Hamiltonian cycle.
2) Stanley, EC1, Ex. 2.16 (on Vandermonde det.)
3) Stanley, EC2, Ex. 7.66, part a) only.
4) Imagine all vertices of a graph $G$ are drawn on a line $L$, and $L$ lies in planes $P_{1}, \ldots, P_{k} \subset \mathbb{R}^{3}$. The edges between vertices are drawn in planes $P_{i}$ without intersections, and only on one side of $L$. Let $c(G)$ be the smallest number $K$ of planes needed for such drawing.

For example, $c\left(K_{3}\right)=1$ since it can be embedded into one plane with all vertices along the line. Similarly, $c\left(K_{4}\right)=2$ since all but one edge can be embedded into $P_{1}$, and the last edge will go into $P_{2}$.
a) Prove that if $G$ is planar and contains a Hamiltonian cycle, then $c(G) \leq 2$.
b) Prove that if $G$ is not planar, then $c(G) \geq 3$.
c) Prove that $c\left(K_{n}\right)=n / 2+O(1)$.
d) Prove that $c_{n}\left(H_{n}\right)=\theta(\log n)$, where $H_{n}$ is a graph of a $n$-dim. hypercube.
e) Prove that if $G$ is planar, then $c(G) \leq 1000$.
[Hint: use a) and Whitney thm.]

