HOMEWORK 1 (18.315, FALL 2005)

Def. A proper coloring of a graph is a coloring of vertices with no monochromatic edges. A grid graph $G_{m, n}$ is a product of a m-path and a n-path.

1) Let $c(n)$ be the number of proper colorings of $G_{n, n}$ with 3 colors. Prove
a) $c(n)>C(1+\varepsilon)^{n^{2}}$ for some $C, \varepsilon>0$;
b) $\frac{\log c(n)}{n^{2}} \rightarrow \alpha$ as $n \rightarrow \infty$, for some $\alpha>0$.
2) Denote by N_{k} be the number of proper colorings of $G_{n, n}$ with k colors. Approximate N_{k} up to 10% when
a) $n=100$ and $k=1,000,000$;
b) $n=100$ and $k=1,000$.
3) Consider the set $\mathcal{S}_{k}(n)$ of proper colorings of $G_{n, n}$ with k colors. Prove that for every two colorings $\chi, \chi^{\prime} \in \mathcal{S}_{k}(n)$, one can go from χ to χ^{\prime} by changing one color at a time, when
a) $k=5$;
b) $k=4$.
4) In Schur's theorem, the proof we presented gives $n(r)<e r$!. Find an exponential lower bound by an explicit construction.
5) Consider random graphs H on n vertices with $m=2 n$ edges (defined as subgraphs of a complete graph K_{n}). What is more likely: that H is bipartite or not?
6) An acute decomposition of a polygon $P \subset \mathbb{R}^{2}$ is a subdivision of P into acute triangles, such that there are no vertices lying on the interior edges (see Figure 1). Prove that an acute decomposition of P always exist if
a) P is a triangle;
b) P is a convex polygon which has an inscribed circle;
c) P is any convex polygon.

Figure 1. A valid acute decomposition of a square, and an invalid one.

Please remember to write the name(s) of your collaborators (see collaboration policy).

