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Abstrat 

The purpose of these notes is to give some examples illustrating how naive numerial  approx-

imations to PDE's may not work at all as expeted. In addition, the following two important 

notions are introdued: (I) von Neumann stability analysis  helps identify when (and 

if) numerial shemes behave properly. (II) Artifial visosity  a tool in stabilizing nu-

merial shemes. These notes should b e read in onjuntion with the use of the -!4,!"  

sripts (in the Athena 18311-Toolkit at MIT) whose names end with the aronym GBNS (for 

Good-Bad-Numerial-Shemes). 
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1 Naive Sheme for the Wave Equation. 

\e will illustrate the points we want to make with the wave equation (in one spae dimension) 

�2 u � 

2 u 

- = 0 . (1 1)
�t 

2 �x 

2 

Sine this equation is seond order in time, it needs two initial onditions For example: 

u(xT 0) = uo(x) and 

�u 

( xT 0) = vo(x) . (1 2)
�t 

\e will assume here that both uo 

and vo 

are periodi, with some period T > 0 Then the solution 

of (1 1) is periodi in x with the same period: u(x + TT t ) = u ( xT t) 

Remark 1.1 We note that, in fat, we an write the solution of this problem expliitly    
1 

l + 

u = uo(x - t) + u o 

( x + t ) + v o 

( s ) ds . 

2 l� 

However, this is not the point here (see below). 

Operate now as if (1 1) were ompliated enough that we needed to solve the equation numerially 

For this purpose introdue a numerial grid {xnT t j} - where n and j are integers, as follows 

xn 

= xo 

+ n x and tj 

= j t . (1 3) 

Here  x and  t are some �small" positive onstants and xo 

is arbitrary Next replae the funtion 

u = u(xT t) o f t h e ontinuum variables x and t by a disrete double sequene {uj }, where n

uj = u(xnT t j 

) . (1 4)n 

�u
Finally, i n trodue the new variable v = 

t 

to re-write equation (1 1) as a frst order in time system 

� 

�u �v � 

2 u 

= v and = . (1 5)
�t �t �x 

2 

In view of (1 4) it is now lear that uj (and the similarly defned vj ) should satisfy n n

un
j+1 - uj vn

j+1 - vj u
j 

un
j + u

j 

n n n+1 

- 2 n�1 = vj + O( t) and = + O( tT ( x)2) T (1 6)n t  t ( x)2 

jwhih an be heked by expanding uj+1, u ,
 i 

n T a ylor series entered at (xnT t j) - using (1 4) n n+1

- and substituting the expansions in (1 6) This suggests the following numerial sheme, allowing 

simple alulation of the solution at time t = tj+1 

(one it is known at time t = tj) 

( )
uj+1 j vj+1 

 t j j 

n 

= uj
n 

+  t v n 

and n 

= vn
j + un+1 

- 2uj
n 

+ un�1 T (1 7)
( x)2 

where the errors should be of size O( tT ( x)2), that is: small 

Upon implementation one quikly disovers that this algorithm is disastrously bad. The MATLAB
sripts: InitGBNS, letureGBNS, demoGBNS, movieGBNS and the help fle readmeGBNS in the Athena 

18311-Toolkit all deal with this sheme and another one to b e introdued later in these notes In 

partiular, letureGBNS goes through and explains a series of alulations showing the details of 

how the sheme fails \e illustrate here the problem with a ouple of examples 

This course makes use of Athena, MIT's UNIX-based computing environment. OCW does not provide access to this environment.

-!4,!"
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Example 1.1 Consider the following initial data (with period T = 2 ) for equation (1.5): 

u(xT 0) = uo(x) = 

1 

2 

(1 + os(J x )) and v(xT 0) = vo(x)  0 . (1 8) 

1 1 

The exat solution: u = (2 + os(J (x - t)) + os(J(x + t))) = (1 + os(J x ) os(J t )) - see 

4 2 

remark 1.1 - is learly also periodi in time of period 2 (a standing wave). For the numerial 

solution we take x = 2 t = 2 N (for some (large" N) and xo 

= -1 in (1.3). Then we im

plement (1.7) for 1 : n : N (the periodiity of the solution means that the indexes n + N and n 

are equivalent) and solve the equations over one time period: 0 : t : 2. 

Numerical solution u with N = 40 points 

1.5 

1 

0.5 

0 

-0.5
 
2
 

-0.5 
0 

0.5 

0 

0.5 

1 

1.5 1 

Time t --- dt=1/N. -1 
Space x --- dx=2/N. 

Figure 1 1: Solution of (1.5) with initial data (1.8) using (1.7) with 40 points in the 

spae grid. To avoid an over-dense graph not all the points in the numerial grid are 

plotted. However, enough points to show all the relevant details are kept. 

S
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ut
io

n 
u 

= 
u(

x,
 t)

. 

Figure 1.1 shows the result of this alulation using N = 40 . Note that the periodiity in time fails 

to hold. In fat, after one time period the numerial method appears to have amplifed the initial 

� �



 

Numerical solution u with N = 57 points
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Figure 1 2: Solution of (1.5) with initial data (1.8) using (1.7) with 57 points in the 

spae grid. To avoid an over-dense graph not all the points in the numerial grid are 

plotted. However, enough points to show all the relevant details are kept. 

Stability of Numerial Shemes for PDE's. MIT, Friday FFbruary  12, 1999 - RosalFs. 4 

data by about 30%! However, maybe this is not so bad (or is it?); after all the value of N being 

used is not that large and the numerial solution looks otherwise quite reasonable. 

Let us now hek what happens as we inrease the resolution (larger N). Any reasonable numerial 

sheme ought to give a better approximation when we do this. Figure 1.2 shows the result of in

reasing N to N = 57 (a rather small inrease). The new approximation is not only not better; it 

is a disaster. By time t � 2, O(1) grid sale (i.e. wavelength = 2  �x ) osillations appear in the 

numerial solution, making it useless. As we will soon see, the sheme is amplifying the errors; the 

30% amplifation of the initial osine wave seen when using N = 40 was just a forewarning of what 

happens for larger N . As N is made even larger, the osillations generated beome huge (in fat, 

their size inreases exponentially with N , as we will soon show). This is illustrated by fgure 1.3, 

whih orresponds to N = 80 . Here (instead of a 3D graph) we plot the numerial solution at time 

t = 2 . Grid sale (wavelength = 2 x ) osillations is all that an be s e en in this graph - notie the 

(very large) vertial sale on this fgure! 

= 2�



Numerical solution u with N = 80 pointsx 10
7 
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0 

Space x --- dx=2/N. Solution for time t = 2 

Figure 1 3: Solution of (1.5) with initial data (1.8) using (1.7) with 80 points 

in the spae grid. Notie the large amplitude grid sale osillations generated by 

the sheme. There is nothing but numerial noise in this piture! 
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Finally, we point out that if (instead of inreasing N ) we ompute for longer times, the same efet 

of large amplitude grid sale osillations arising (whih grow exponentially in time) is observed. 

Example 1.2 In a seond example we take the following Gaussian initial data for equation (1.5) 

u(xT 0) = uo(x) = exp(-a ln(10) x 

2) and v(xT 0) = vo(x) 0 T (1 9) 

for -1 : x : 1, where a > 0 is a onstant. We extend this to periodi initial data (of period T = 2 ) 

by repeating the above profles over eah interval (2n - 1) : x : (2n + 1) , with n integer. These 

initial values are not smooth - as were the ones in the prior example. There is a small orner in 

uo(x), whenever x is an odd integer (in partiular for x = ±1). This is beause at these points there 

is a utof from a Gaussian entered at x - 1 to one entered at x + 1 . Notie that the size of the 

missmath in the derivatives of uo 

goes down very rapidly as a inreases. 

�



Numerical solution u with a = 10. 
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Figure 1 4: Solution of (1.5) with initial data (1.9) using (1.7) with 100 points in 

the spae grid and a = 10 . T o avoid an over-dense graph not all the points in the 

numerial grid are plotted (enough points to show all the relevant details are kept). 
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For the numerial solution we take xo = 

 

-1,  �x = 0 . 02 and  �t = 0. 01  in (1.3) - this orresponds 

to N = 100 in the notation of example 1.1 - and use (1.7) to solve the equations for 0 : t : 0.5. 

This is very similar to what we did in the prior example, exept that here we vary the initial 

onditions (by hanging the parameter a) instead of hanging the resolution with variations in N . 

In the frst alulation, we take a relatively large a, namely a = 10.  Figure 1.4 shows the result of 

this alulation, whih appears quite reasonable. 

In the seond alulation, we take a smaller value a = 6 . This makes the orners more substantial 

(though still pretty weak). Figure 1.5 shows the result of this last alulation, whih is now not 

reasonable at all. It is quite lear that, just as in the prior example, the small errors that are 

triggered by the orners are amplifed by the sheme (so we observe grid sale osillations near 

x = ±1 towards the end of the run). 

Finally, we point out that, if the alulations are run for times longer than 0 : t : 0.5, even the one 

with a = 10 eventually shows grid sale osillations. These grow exponentially in time and pretty 

soon dominate the whole solution (not just the neighborhood of x = ±1) with huge amplitudes. 
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Numerical solution u with a = 6. 
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Figure 1 5: Solution of (1.5) with initial data (1.9) using (1.7) with 100 points in 

the spae grid and a = 6 . T o avoid an over-dense graph not all the points in the 

numerial grid are plotted (enough points to show all the relevant details are kept). 
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The next setion gives a detailed explanation of why this is happening 

2 von Neumann stability analysis for PDE's. 

In this setion we introdue the von Neumann stability analysis tehnique, that an b e used to 

analyze numerial shemes and predit when the behavior observed in the prior setion will our 

There are two basi onepts useful in understanding numerial shemes These are the notions of 

onsisteny and stability. For a numerial sheme to b e useful it must b e both onsistent and 

stable It is very important to realize that these two notions are independent 

Consisteny simply means that, as x and t vanish, the solutions of the equation must satisfy 

the numerial sheme with errors that vanish This is in fat what equation (1 6) tells us about 

the sheme in (1 7) Consisteny guarantees that the sheme truly approximates the equation we 

intend to solve with it (and not something else) 

� �
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Stability simply means that the sheme does not amplify errors Obviously this is very important, 

sine errors are impossible to avoid in any numerial alulation In fat, even in the ideal ase 

of infnite preision, we still have to deal with disretization errors - i e the O terms in (1 6) 

Clearly, if errors are amplifed, pretty soon they will dominate any omputation (making it useless) 

As it turns out, for linear onstant oeÆient shemes suh as (1.7), a omplete stability 

analysis is possible, beause the numerial algorithm equations an be solved exatly by separa-

tion of variables This means then that any solution of the sheme an be written as a superposition 

of Fourier modes These Fourier modes are solutions of the form 

uj = U Gj n
n    n and vj = V Gj     

   n  

 

T (2 1)

where U , V , G and k are onstants (with k real) Generally double sequenes like this will be solu-

tions provided G, U and V are restrited by some funtional relations of the form G = G(kT  �xT  �t),  

U  =  U  (k T  �xT  �t) and V = V (kT  �xT  �t) - below we  arry through the alulations for the speif 

example of (1 7) 

G is alled the Growth Fator  It is lear that: 

for stability IGI : 1 is needed for all k. (2 2) 

Else some modes will b e amplifed by a fator G in eah time step, eventually dominating the 

solution A s heme  is alled stable if the stability ondition IGI : 1 an be satisfed with (perhaps) 

a restrition on the time step of the form 0 <  �t : T( x),  where T is a positive funtion of its 

argument Notie that restritions of this latter form allow arbitrarily small time and spae steps, 

whih are needed to b e able to ompute the solution with any required degree of auray (how 

small is determined by how well  onsisteny is satisfed, whih determines the size of the errors for 

any given � t and � x) 

Remark 2.1 The parameter k is the wavenumb er  of the mode, related to the wavelength A in 

spae1 by A = (2 J� x ) k. For the partiular ase of periodi problems (suh as the ones onsid

ered in examples 1.1 and 1.2), the Fourier modes (2.1) must also satisfy the periodiity ondition. 

That is, one must have A = T f , where f is an integer and T is the period in spae. Sine in this 

ase one would normally take � x = T N , where N is a large natural number, the aeptable values 

for k end up restrited to the set 

2 J� x 2J T
k = kg = f

T
 = f

N
 

 

and A = Ag = T with 0 : 

 

f <
 f

 N . (2 3)

Here the upper bound N on f follows from the fat that kg 

and kg+N       

 

give the same Fourier mode in

(2.1); thus there is no reason to keep both. 

We note that (due to the fat that the numerial sheme only samples the solution at a disrete set 

{xn} of points in spae) there is a ertain trikiness in the interpretation of the wavelengths 

Ag                

 

above. Clearly, f = 0 orresponds to a solution independent of x and f = 1 orresponds to the 

fundamental mode with wavelength T in x. As f ontinues to inrease harmonis of this fundamental 

mode appear, with wavelengths T 2,  T 3 . . . However, this proess annot ontinue forever, sine 

:
l Write � the argument : in the exponentials in (2.1) as :  (    ), using (1.3).

  
  



 

 

 � �
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the numerial grid annot resolve arbitrarily small wavelengths. In fat, the shortest wavelength that 

an b e resolved orresponds to f = N 2 with Ag 

= 2 x (grid size osillations, with period 2 in n: the 

solution alternates between two values on the grid). To see this reall that kg 

and kg+N 

give the same 

Fourier mode in (2.1). Thus the mode (N - f) has the same wavelength as the mode -f, i.e. T f . 

This means that, after f = N 2 the wavelengths start inreasing, to reah bak the fundamental 

mode at f = N - 1. Eah wavelength then atually appears twie in the range 1 < f < N . 

We should not be t o o surprised by the fat that eah wavelength appears twie in the range 1 < f < N . 

Notie that the modes in (2.1) are omplex valued (exept when k is a multiple of 2J). Thus, to be 

real valued any solution should inlude both the modes and their omplex onjugates. However, the 

mode onjugate to the one with k = kg 

above in (2.3) is the mode with k = k , whih is preisely 

the same as the mode with k = kN�g. 

�g

In any numerial alulation it is the modes with wavelengths of the order of the grid size 

(i.e. f lose to N 2 ) that are worrisome in terms of instabilities. These modes annot be expeted 

to represent aurately any true feature of the real solution one is trying to ompute2 and should 

not have any signifant presene in the numerial solution. Thus, it is very important that they 

not be amplifed by the sheme. In fat, generally it is desirable to have them damped, sine they 

mostly represent numerial "noise" generated by all the approximations impliit in any numerial 

alulation. 

On the other hand, the modes with wavelengths muh bigger than x (that is, f 0 or f N in 

(2.3)) should be treated "aurately" by the sheme. By this we mean that their time evolution 

(given by the fators Gj in (2.1)) should be as lose as possible to the one provided b y the PDE the 

sheme approximates. This is what onsisteny is all about. 

Consider now the speial ase of the algorithm (1.7). To see under whih onditions (2 1) 

nis a solution, substitute this form into (1 7) Dividing by the ommon fator Gj it follows that 

t 

G U = U + t V and G V = V + ( - 2 + 

� ) U . 

( x)2 

Clearly an eigenvalue equation AY = G Y , with eigenvalue G, eigenvetor Y = ( UT V )T and matrix 

of oeÆients   
1 t 

A = 6 

. 

-4 sin2( ) 1
(6l)� 2

From the harateristi equation det(A -G) = 0, then 

t 1 

G = 1 ± 2  sin( k) . (2 4) 

x 2 

It is lear that, for (1.7) there is no stability, sine (2 4) yields 

IGI2 = 1 + 2 

t 

sin(
1 

k) 

2 

T (2 5) 

x 2 

whih is always bigger than one 

2 Reall (1..), whih makes sense in terms of approximating the solution only if is muh smaller than any 

distane over whih the solution hanges signifantly. 

x 

�

�

� � �

eik

eik e ik

�
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�

�

�
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Notie that the maximum amplifation  for the sheme (1.7) ours - as follows from (2 5) 

- for k = J. This orresponds to f = N 2 in (2 3), i e : grid size osillations with A = 2  �x . 

In this ase 

IGI = GM 

=
 

1 + 4 T T (2 6) 

where T = ( � t � x)2 . For j
 (1 7), the amplitude of the grid size osillations grows like GM 

. Thus 

we an write for the amplifation fator A2 = A2(t)  the 

 

(for period 2  �x mode) 

ln(GM)
A2  

 

= exp(t ) T (2 7)
 �t

 

 

where we h av e used j = t  �t  In partiular (in examples 1.1 and 1.2 earlier) we to  ok  � x = 2 � t 

and  �t = 1  =N , so that 

ln 2   

A = exp(
  

N t) = 2 �2     . 

 

(2 8)
2 

\e will now use these results to explain the behavior observed earlier in fgures 1 1 through 1 5 

Remark 2.2 Consider frst example 1.1, with the initial data for sheme (1.7) given by 

o 1 2nJ
u

 

 o
n -  

 = 1 os( ) and v = 0 .
2 

� 
  

N
 

 �
 n   

 

These data orrespond to a superposition of just three modes in (2.1), with k = ko, k = k1  

 

and

k = k
�1 r kN�             

 1 

in (2.3). Thus, the exat solution for the sheme equations is rather simple

and has the form 

1
  

gj + ggj 2nJ
 !

j j 

uj  

(
 

 = 1- os ) and vj g - gg 2nJ J
 

n     n = vv os(
 

) T for g = 1 + i sin(
 

) T (2 9)
2 2 N 2 i 

 

N
       

N
  

 

where vv is a onstant and gg denotes the omplex onjugate of g. Of ourse, g and gg are the values 

G in (2.4) takes for k = k1 = 2 J N . 

 

Notie that the exat solution (2.9) does not exhibit any atastrophi growth of grid size osillations, 

as was observed in example 1.1. However, the results displayed in fgures 1.1 through 1.3 do not 

orrespond to the exat solution above but to atual omputations  using the sheme in (1.7) - whih 

were done using double preision foating point arithmeti 
( MATLAB

 default). The round of errors 

introdued by the fnite preision of the alulations introdues (very small) perturbations into the 

exat solution above, whih the sheme then evolves in time just as if they were part  of the solution. 

To understand  what the sheme does with the perturbations introdued by the fnite preision, de

ompose them into a sum over the modes in (2.1). This sum will generally inlude all the modes, 

in partiular the highly amplifed ones with grid size wavelengths.  Consider then what would happen 

with the solution of the sheme if we add to the initial data above3 a small amount of the omponent 

orresponding to the maximum amplifation rate above in (2.6). Let the amplitude of this ompo

nent be E, where E has (roughly) the size of the expeted errors. Atually, E should be a little smaller 

than the round of errors that our, sine not all the errors get projeted into the fastest growing 

modes. Thus �

 take E 17
 = O(10 ) as a g o o d ballpark fgure for the alulations  in setion 1 

and use (2.8) above to explain the behavior observed in fgures 1.1 through 1.3, as follows: 

3 Whih � has only omponents orresponding to e = 0, e = 1 and e = N  1 in (2.3). 
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1.1 x 10121. First, for N = 40 , (2.8) gives A2 

for the fnal time t = 2 . This is not enough to 

ompensate for the smallness of E and the numerial solution is well desribed by (2.9). 

Notie that (2.9) is not periodi in time; sine the wave amplitude in u behaves like Re(gj), 

whih grows as j grows. In fat, 2 N = 80 steps are needed to reah the fnal time t = 2 and 

it is easy to hek that  	  
So	

J 

So

Re(g ) = Re 1 + sin( ) 1.28 . 

40

This agrees quite well with the 30% growth in the wave amplitude observed in fgure 1.1. 

1.4 x 10172. Seond, for	 N = 57 , (2.8) gives A2 

for the fnal time t = 2 . This is about the 

same as E 

�1 and agrees with the fat that grid osillations of O(1) amplitude are observed in 

fgure 1.2. 

3. Third, for N = 80 , (2.8) gives A2 

1.2 x 1024 for the fnal time t = 2 . This is about 107 

times bigger than E 

�1, whih (again) agrees pretty well with the observed amplitude of the grid 

size osillations in fgure 1.3. 

4. Finally, it is not just the mode with f = N 2 in (2.3) that gets a large amplifation fator by 

the sheme. Al l the ones with f N 2 do and should thus be present in the solution. It is 

well known that when sinusoidals with lose wavenumbers are added, "beats" with wavenumbers 

equal to the diferene in wavenumbers our. Thus, in this ase we should observe "beats" with 

wavenumbers low multiples of k1 

= 2 J N - whih, indeed, are quite obvious in fgure 1.3. 

Remark 2.3 Now onsider example 1.2, where N = 100 and 0 : t : 0.5. Then, for the time 

t = 0 . 5 , e quation (2.8) gives A2 

3.4 x 107 . 

In this ase the initial data has omponents in all the modes 0 : f < N in (2.3). In fat, be

ause of the orners at x = ±1, the amplitude present in the higher modes is relatively large. The 

strength of these orners an be measured by the jump in the derivative of the initial data there: 

J(a) = 4 a ln(10) 10 

�a. For moderate4 size a, J(a) pretty muh determines how muh amplitude 

there is in the higher modes. Now J(10) 9.2 x 10 

�9 and J(6) 5.5 x 10 

�5. Thus, from the value 

of A2 

above, it should be lear why in fgure 1.4 (orresponding to a = 10 ) the solution exhibits no 

detetable osillations, while in fgure 1.5 (orresponding to a = 6 ) they show up. 

Notie that in this ase it is also true that it is not just the mode with f = N 2 in (2.3) that gets a 

large amplifation fator by the sheme. Al l the neighboring ones are also present. However, now 

their amplitudes and phases are all orrelated beause they (mostly) are generated by the orner in 

the initial data. Thus they interfere with eah other in ways subtler than the mere b e ating observed i n 

the prior example; i.e.: the pattern of grid size osillations has a lear maximum near the positions 

of the orners in fgure 1.5. 

In the next setion we will disuss a simple strategy to stabilize numerial shemes, to get rid 

of numerial osillations and other undesirable efets The strategy is based on the introdution 

of artifial (numerial) dissipation to (seletively) damp the higher modes, without signifantly 

afeting the lower modes (where a onsistent sheme should behave properly - see remark 2 4) 

4 When a is large, the orner is very weak and the dominant ontribution to the mode amplitudes omes from the 

smooth part of the initial data (whih yields very little amplitude in the high modes). 
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Remark 2.4 Finally, going bak now to the last paragraph in remark 2.1, onsider the behavior of 

G in (2.4) for k small. Namely 

� t � t
G = 1

 3 

 ± i k + O k
 �x

  

� 
 �x

 

 

 �
. (2 10) 

This should be ompared with the behavior of the exat solutionsolution for the wave equation (1.1) - see 

remark 1.1 - whih evolves Fourier modes aording to the rule 

k � t
u � exp 

 (
 i (xn ±
 

 t
�

) 
 

j)
x

  

 

� exp 

�
i 

� 
kn ± kj

 �
.

 �x
 

 

Thus the exat evolution orresponds to a fator G given by 

 �
 �t  

=
 �t  �t

G exp ± i k = 1 ± i
 2

exat
 

� x
  k + O ( k ) . (2 11)

 

 

� 
 �x

 �
 �x 

 �

This should be ompared with (2.10) above. It is lear then that (for k small) G is orret up to 

small terms in k, whih is an alternative way of verifying that the sheme (1.7) is onsistent. 

3 Numerial  Visosity and Stabilized  Sheme. 

FILL IN HERE THE GOOD SCHEME EQUATIONS. (3 1) 

Notation used for G o o d Sheme in -!4,!"ȡ T = ( �t  2
 �x)2 and v = t  �x . 

Next the fgures that go with the go  o d sheme. 

4 Referene.  

For more information  regarding stability of numerial shemes (and many other useful numerial 

topis) a good all-around pratial referene is Numerial Reipes, The Art of Sientif Computing  

by \ H Press, S A Teukolsky, \ T Vetterling and B P  Flannery  Cambridge U. Press, New 

York, 1992  .



Numerical solution u with N = 55 points 
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Figure 3 1: Solution of (1.5) with initial data (1.8) using the orreted sheme (3.1) 

with 55 points in the spae grid. To avoid an over-dense graph not all the points 

in the numerial grid are plotted. However, enough points to show all the relevant 

details are kept. 
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Numerical solution u with N = 190 points 
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Figure 3 2: Solution of (1.5) with initial data (1.8) using the orreted sheme (3.1) 

with 190 points in the spae grid. To avoid an over-dense graph not all the points 

in the numerial grid are plotted. However, enough points to show all the relevant 

details are kept. 
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