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Abstrat 

These notes give a few examples illustrating how ontinuum models an b e derived from speial 

limits of disrete models. Only the simplest ases are onsidered, illustrating some of the most 

basi ideas. These tehniques are useful beause ontinuum models are often muh easier to deal 

with than disrete models with very many variables, both oneptually and omputationally. 
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1 Introdution. 

Continuum approximations are useful in desribing disrete systems with a large number of degrees 

of freedom In general, a ontinuum approximation will not desribe all possible solutions of the 

disrete system, but some speial lass that will depend on the approximations and assumptions 

made in deriving the ontinuum model \hether or not the approximation is useful in desribing 

a partiular situation, will depend on the appropriate approximations being made The most 

suessful models arise in situations where most solutions of the disrete model evolve rapidly in 

time towards onfgurations where the assumptions behind the ontinuum model apply 

The basi step in obtaining a ontinuum model from a disrete system, is to identify some basi 

onfguration (solution of the disrete model) that an be desribed by a few parameters Then one 

assumes that the full solution of the system an be desribed, near every point in spae and at every 

time, by this onfguration - for some value of the parameters The parameters are then assumed 

to vary in spae and time, but on sales (maro-sales) that are muh larger than the ones assoiated 

with the basi onfguration (miro-sales) Then one attempts to derive equations desribing the 

evolution of these parameters in the maro-sales, thus averaging out of the problem the miro-

sales There is a lose onnetion b e t w een this approah, and the"quasi-equilibrium" approximations 

that are often invoked to "lose" ontinuum sets of equations derived using onservation laws. 

For example, when deriving the equations for Gas Dynamis in Statistial Mehanis, it is assumed 

that the loal partile interations rapidly exhange energy and momentum between the moleules 

�

� 

- so that the loal probability distributions for veloities take a standard form (equivalent t o l o  a l 

thermodynami equilibrium) \hat exatly makes these assumptions work (in terms of properties 

of the governing, miro-sale, equations) is rather poorly understood But that they work rather 

well annot be denied In these notes we will onsider examples that are rather simpler than these 

ones, however, where the "loal onfgurations" tend to be rather trivial 

2 Wave Equations from Mass-Spring Systems. 

Longitudinal Motion. 

Consider an array of bodies/partiles, onneted by springs, and restrited1 to move on a straight 

line Let the positions of the bodies be given by xn 

= xn(t), with n = 0 ,  1 ,  2 ,  , and let Nn 

be the mass of the nth partile. Furthermore, let the fore law for the spring b e t w een partiles 

is positive when the spring is under tension 2 

fore = fn+ (:x),  where :x is the distane n and n  1  b e given by: b e t w een the partiles, and 

fn+ �

� 

If there are no other fores involved (e g no frition), the governing equations for the system are: 

d2 

(xn 

- xn-1) ,xn 

= fn+ 

� (xn+1 

- xn) - fn-
Nn 

(2 1)  

dt2
� 

�� 

for n = 0 ,  1 ,  2 ,  The simplest solution for this system of equations is equilibrium In this 

ase all the aelerations vanish, so that the partile positions are given by the series of algebrai 

1
By some devie: say the bodies are sliding inside a hollow tube.   

2
If the spring obeys Hooke's law, then f

n+
�

�

( x  k  

n  +
�  x L  

�
n  +

�  

�

, where k
n+

�

� 

> 0 and L
n+

�

� 

> 0 are the 

spring onstant and equilibrium length, respetively. 

.
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equations 

0 = f n + 

� ( x n +1 

- xn) - f n-
� (xn 

- xn-1) (2 2) 

�	 � 

This is the basi onfguration (solution) that we will use in obtaining a ontinuum approximation 

Note that this is a one parameter family: if the fores are monotone funtions of the displaements 

:x, then one any one of them is given, the others follow from (2 2) 

Before proeeding any further, it is a good idea to non-dimensionalize the equations. \e will 

assume that: 

A.	 All the springs are roughly similar, so that we an talk of a typial spring fore f , and a typial 

spring length L Thus we an write   
: x 

� � 

� 

+ 

� L
f n+ 

(:x) = f F n 

,	 (2 3) 

�where Fn+ 

is a non-dimensional mathematial funtion, of 0(1) size, and with 0(1) deriva-
� 

�tives A further assumption is that Fn+ 

hanges slowly with n, so that two nearby springs 

�

are nearly equal Mathematially, this is speifed by stating that: 

Fn+ 

(T) = F ( ( n  1 / 2), T ) , (2 4)� 

� 

where 0    1, and F is a "nie" (mathematial) funtion of its two variables 

B.	 All the partiles have roughly the same mass m, and their masses hange slowly 

with n, so that we an write: 

Nn 

= m N  ( n  )  ,  (2 5) 

where N is a nie mathematial funtion, with 0(1) size, and with 0(1) derivatives 

Remark 2.1 Why do we need these assumptions? This has to do with the questions of validity, 

disussed in the introdution. Suppose that these hypothesis are violated, with the masses and 

springs jumping wildly in harateristis. Then the basi onfguration desribed by (2.2) will still 

be a solution. However, as soon as there is any signifant motion, neighboring parts of the hain 

will respond very diferently, and the solution will move away from the loal equilibrium implied by 

(2.2). There is no known method to, generially, deal with these sort of problems - whih turn out 

to be very important: see remark 2.2. 

From the assumptions in A and B above, we see that: 

Changes in the mass-spring system our over length sales £ = L/  (2 6) 

Using this sale to non-dimensionalize spae, namely: xn 

= £  n  

,  and a yet to b e speifed time 

sale T to non-dimensionalize time, namely: t = T  ,  the equations beome: 

2 

      
d2  f 	 T  n  +1 

- n  n 

- n-1
N( n)  n 

= F - F 

�	 (2 7)n +	 n-d 2 m L
�

�  �  

A and B above also imply that, for the solution in (2 2), the inter-partile distane xn+1 

- xn 

varies 

slowly - an 0 ( ) frational amount per step in n Thus we propose solutions for (2 7) of the form:

 n(t) =  ( s n 

, t ) , where sn 

= n , (2 8) 

and  =  (s, t) is some smooth funtion of its arguments 

:

+ 1

:

n � ;

.

.
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Substituting (2 8) into (2 7), and using (2 4) and (2 5), we obtain 

� � � � 

�2  2 f T 2 

  �
N  =

 �
(s)

2
 s,

 

 F    0  2 (  

 )  (2 9)
�  m L �  s

 

 s �  

Here we have used that: 

 n+1 

 n 

�
=

 1- 1
  (s  

  n  n � 1
   , t) 0( 2 ) and  

 

 

- -  

=
 

(s  , t) 0( 2 ) ,
 �

 

 2
     

 s 2
    

� s
  

 

-

with a similar formula applying  diferene F n �
+

Fn �
 to the  

-
 

� 

-
� 

Equation (2 9) suggests that we should take 

T =

f
m L 

  

2
, (2 10)

  f 

for the un-speifed time sale in (2 7) Then equation (2 9) leads to the ontinuum limit ap-

proximations (valid for 0   1)  

 

�2 � �
N(s)  =

 

� 2
 F 

�
s,  

�
 (2 11)

 �s �s 

The mass-spring system introdued in equation (2 1) an b e thought of as a simple model for an 

elasti rod under (only) longitudinal fores Then we see that (2 11) is a model (nonlinear wave) 

equation for the longitudinal vibrations of an elasti rod, with s a lagrangian oordinate 

for the points in the rod, N = N(s) the mass density along the rod, and  giving the position of 

the point s as a funtion of time, and F a funtion haraterizing the elasti response of the rod 

Of ourse, in pratie F must b e obtained from laboratory measurements 

Remark 2.2 The way in whih the equations for nonlinear elastiity an be derived for a rystalline 

solid is not too diferent! 

    from the derivation of the wave equation (2.11) for longitudinal vibrations. 

Then a very important question arises (see frst paragraph in setion 1): What important behaviors 

are missed due to the assumptions in the derivation? How an they be modeled? In partiular, 

what happens if there are "defets" in the rystal struture (see remark 2.1)? These are all very 

important, and open, problems of urrent researh interest. 

Example 2.1 Uniform Rod. 

If all the springs and all the partiles are equal, then we an take N 1 and F is indep  endent of 

s. Furthermore, if we take L to be the (ommon) equilibrium length of the springs, we then have 

�  

 =  

� �
 

� 

�2 

�
� 2

 

2
� �

F = 
 

 

2
  (2 12)

� 
 

 �s �s �s �s2 

where 2 = 2(T) = dF/dT(T) > 0, and F (1) = 0 (equilibrium length). The unperturbed "rod" or

responds to  s, while  ( s   orr esponds to the rod under uniform tension (( > 1 ), or om

pression (( 1 ). Also, note that  is a (nondimensional) speed - the speed at whih elasti 

disturbanes along the rod propagate: i.e. the sound speed. 

3
At least qualitatively, though it is tehnially far more hallenging. 
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Example 2.2 Small Disturbanes. 

Consider a uniform rod in a situation where the departures from uniform equilibrium are small. 

That is � /�s � (, where ( is a onstant. Then equation (2.12) an be approximated by the 

linear wave equation

  =    

2
  , (2 13) 

where  = (() is a onstant. The general solution to this equation has the form 

= g(s -  ) h ( s  ) , (2 14) 

where g and h are arbitrary funtions. This solution learly shows that  is the wave propagation 

veloity. 

Remark 2.3 Fast vibrations. 

The vibration frequeny for a typial mass m, attahed to a typial spring in the hain, is: 

f 

f 1
w = = (2 15) 

m L  

This orresponds to a time sale muh shorter than the one involved in the solution in (2.8-2.11). 

What role do the motions in these sales play in the behavior of the solutions of (2.1), under the 

assumptions made earlier in A and B? 

For real rystal latties, whih are defnitely not one dimensional (as the one in (2.1)) these fast time 

sales orrespond to thermal energy (energy stored in the loal vibrations of the atoms, relative to 

their equilibrium positions). It is believed that the nonlinearities in the lattie at so as to randomize 

these vibrations, so that the energy they ontain propagates as heat (difuses). In one dimension, 

however, this does not generally happen, with the vibrations remaining oherent enough to propagate 

with a strong wave omponent. The atual proesses involved are very poorly understood, and the 

statements just made result, mainly, from numerial experiments with nonlinear latties. 

Just to be a bit more preise: onsider the situation where all the masses are equal - Nn 

= m 

for all n, and all the springs are equal and satisfy Hooke's law (linear elastiity): 

: x 

� 

� L 

f n+ 

(:x) = k (:x - L) = f - 1 , (2 16) 

where k is the spring onstant, L is the equilibrium length, and f = k L Then equation (2.1) takes 

the form 

d2 

xn 

= w2 (xn+1 

- 2xn 

xn-1) , (2 17)
dt2 

where w is as in (2.15). Beause this system is linear, we an write its general solution as a linear 

superposition of eigenmodes, whih are solutions of the form4 

 
xn 

= exp( n  -  a t  )  ,  where a = 2 w sin and -   is a onstant. (2 18)
2 

These must be added to an equilibrium solution xn 

= ( L n = s n 

, where ( > 0 is a onstant. 

Chek that these are solutions. 

4

X X

X +

��

� �

:

+

i � n �
� �
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Relative to the mean position sn 

along the lattie, eah solution in (2.18) an be written as 

xn 

= exp( s n 

- t )
(L  

Thus we see that it represents a wave of wavelength A = 2 1(L/ , and speed 

(La  2  (Lw  2 

w 

= = sin = sin (2 19)
2 2 

propagating along the lattie - where  = (Lw  is a speed. Note that the speed of propagation is a 

funtion of the wavelength - this phenomenon is know by the name of dispersion. We also note 

that the maximum frequeny these eigenmodes an have is a = 2 w , and orresponds to wavelengths 

of the order of the lattie separation.5 

In the ase of equations (2.16 - 2.17) there is no intrinsi in the equations: it must arise from the 

initial onditions. That is to say: assume that the wavelength £ with whih the lattie is exited is 

muh larger than the lattie e quilibrium separation L, i.e. £ � L, with = L/£. This orresponds to 

solutions (2.18) with small. In this long wave limit we see that (2.1g) implies that the solutions 

have the same wave speed w 

= . This orresponds to the situation in (2.13 - 2.14). 

It is lear that, in the linear lattie situation desribed above, we annot dismiss the fast vibration 

exitations (with frequenies of the order of w) as onstituting some sort of energy "bath" to be 

interpreted as heat. The energy in these vibrations propagates as waves through the media, with 

speeds whih are of the same order of magnitude as the sound waves equation (2.13) desribes. 

Before the advent of omputers it was believed that nonlinearity would destroy the oherene of 

these fast vibrations. Numerial experiments, however, have shown that this is not (generally) true 

for one dimensional latties,6 though it seems to be true in higher dimensions. Exatly why, and 

how, this happens is a subjet of some urrent interest. 

Transversal Motion. 

\e onsider now a slightly diferent situation, in whih the masses are allowed to move only in 

the diretion perpendiular to the x axis To b e preise: onsider a sequene of masses Nn 

in 

the plane, whose x oordinates are given by xn 

= n L . Eah mass is restrited to move only in the 

orthogonal oordinate diretion, with Yn 

= Yn(t) giving its Y position. The masses are onneted by J
L2  ( Y - Yn)2 

n +1springs, with f (:r ) the fore law, where :r is the distane b e t=  w een�

� 

�

� 

2d

�

� 

masses. Assuming that there are no other fores involved, the governing equations for the system 

are: 

Yn+1 

- Yn 

Yn 

- Yn-1 

n+ n+ n+

Nn 

Yn 

f (:r )  f (:r ) , (2 20) =  

� n+ � � n-
�- n+ n-dt2 :r :r�� ��

n+ �

� 

n-
�

� 

for n = 0 , 1 , 2 (you should onvine yourself that this is the ase).  

The simplest solution for this system of equations is equilibrium, with all the masses lined up  

horizontally Yn+1 

= Yn, so that all the aelerations vanish. Again, one an use this (one 

parameter) family of solutions to obtain a ontinuum approximation for the system in (2 20) -

under the same assumptions earlier in A and B 

5
The reason for the 2 relative to (2.15 is that the masses are oupled, and not attahed to a single spring. 

6
The frst observation of this general phenomena was reported by  .  ermi, J. Pasta and S. Ulam, in 1955: Studies 

of Non Lineam Pmoblems, Los Alamos Report LA-1940 (1955 , pp. 978-988 in Colleted Papers of Enrio Fermi. I I, 

The University of Chiago Press, Chiago, (1965 . 

i
�

i � :

�
�

�

�
�
�
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Remark 2.4 Stability of the Equilibrium Solutions. 

It should be intuitively obvious that the equilibrium solutions desribed a b ove will be stable only if the 

�

� 

equilibrium lengths of the springs £ are smaller than the horizontal separation L b e t w een the masses, n+

namely: £ This so that none of the springs is under ompression in the solution, sine any 

mass in a situation where its springs are under ompression will easily "pop" out of alignment with 

the others - see example 2.3. 

Introdue now the non-dimensional variables } = /L , = x/L (note that, sine xn 

= , in 

fat plays here the same role that s played in the prior derivation7), and = t/T , where T is as 

in (2 10) Then the ontinuum limit for the equations in (2.20) is given by 

�2} � F (  S ) �} 

N( ) = (2 21)
� 2 � S � 

where } = } (  ) and   2  �}  S = 1 
� 

The derivation of this equation is left as an exerise to the reader. 

The mass-spring system introdued in (2 20) an b e thought of as a simple model for an elasti 

string restrited to move in the transversal diretion only Then we see that (2 21) is a model 

(nonlinear wave) equation for the transversal vibrations of a string, where is the 

longitudinal oordinate along the string position, } is the transversal oordinate, N = N( ) is 

the mass density along the string, and F = F (  S ) desribes the elasti properties of the string s In 

the non-dimensional oordinates, the (loal) equilibrium length for the string is given by ee 

= £/L 

That is, the elasti fores vanish for this length: 

F ( e e( )) 0 , where ee 

1 (for stability, see remark 2 4) (2 22) 

�

�

.  n+

� 

\e also assume that  S ) > 0 

�S
F (

Example 2.3 Uniform String with Small Disturbanes. 

Consider now a uniform string (neither N , nor F , depend on ) in a situation where the departures 

from equilibrium are small (�}/� is small).  

For a uniform string we an assume N 1, and F is independent of . Thus equation (2.21)  

redues to  

�2} � F ( S ) �} 

= (2 23)
� 2 � S � 

Next, for small disturbanes we have S 1, and (2.23) an be approximated by the linear wave 

equation 

} =  

2 }  ,  (2 24) 

where 2 = F (1) is a onstant (see equations (2.13 - 2.14). 

The oordinate s is simply a label for the masses. Sine in this ase the masses do not move horizontally, X an 

be used as the label. 

8
Notie that S is the loal strething of the string, due to its inlination relative to the horizontal position (atual 

length divided by horizontal length . 

7
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Notie how the stability ondition ee 

1 in (2.22) guarantees that 2 > 0 in (2.23). If this were not 

the ase, instead of the linear wave equation, the linearized equation would have been of the form 

} d 

2 } = 0 , (2 25) 

with d > 0 . This is Laplae Equation, whih is ill-posed as an evolution in time problem. 

To see this, it is enough to notie that (2.25) has the following solutions: 

d  k t} = e sin(k ) , for any - k (2 26) 

These solutions grow arbitrarily fast in time, the fastest the shortest the wavelength ((k( larger). 

This is just the mathematial form of the obvious physial fat that a straight string (with no bending 

strength) is not a very stable objet when under ompression. 

General Motion: Strings and Rods. 

If no restritions to longitudinal (as in (2 1)) or transversal (as in (2 20)) motion are imposed on the 

mass-spring hain, then (in the ontinuum limit) general equations inluding both longitudinal and 

transversal modes of vibration for a string are obtained Sine strings have no bending strength, 

these equations will be well behaved only as long as the string is under tension everywhere 

Bending strength is easily inorporated into the mass-spring hain model Basially, what we need 

to do is to inorporate, at the loation of eah mass point, a bending spring These springs apply 

a torque when their ends are b e n t, and will exert a fore when-ever the hain is not straight The 

ontinuum limit of a model like this will be equations desribing the vibrations of a rod 

\e will not develop these model equations here 

3 Torsion Coupled Pendulums: Sine-Gordon Equation. 

Consider an horizontal axle A, of total length £, suspended at its ends by "fritionless" bearings. Along 

this axle, at equally spaed intervals, there are N equal pendulums. Eah pendulum onsists of a rigid 

rod, attahed perpendiularly to the axle, with a mass at the end When at rest, all the pendulums 

point down the vertial. \e now make the following assumptions and approximations: 

N 

• 1. Eah pendulum has a mass The distane from its enter of mass to the axle enter is L 

N 

• 2. The axle A is free to rotate, and we an ignore any fritional fores (i e : they are small) In 

fat, the only fores that we will onsider are gravity, and the torsional fores indued on the 

axle when the pendulums are not all aligned 

• 3. Any deformations to the axle and rod shapes are small enough that we an ignore them Thus 

the axle and rod are assumed straight at all times 

• 4. The mass of the axle is small ompared to N , s o w e ignore it (this assumption is not stritly 

needed, but we make i t t o k eep matters simple) 

Our aim is to produe a ontinuum approximation for this system, as N   , with everything else fxed. 

<

TT XX

�1 < k <1 :
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Eah one of the pendulums an be haraterized by the angle en 

= en(t) that its suspending 

rod makes with the vertial diretion. Eah pendulum is then subjet to three fores: 

(a) Gravity, for whih only the omponent perpendiular to the pendulum rod is onsidered 9 

(b) Axle torsional fore due to the twist en+1 

- en 

This ouples eah pendulum to the next one 

() Axle torsional fore due to the twist en 

- en-1 

This ouples eah pendulum to the prior one 

\e will assume that the amount of twist per unit length in the axle is small, so that Hooke's law applies. 

Remark 3.1 Hooke's Law for Torsional Fores. 

In the Hooke's law regime, for a given fxed bar, the torque generated is diretly proportional to the 

angle of twist, and inversely proportional to the distane over whih the twist ours. 

To be speif: in the problem here, imagine that a setion of length :£ of the axle has been twisted 

by an amount (angle) \. Then, if is the torque generated by this twist, one an write 

\ 

= , (3 1) 

:£ 

where is a onstant that depends on the axle material and the area of its rosssetion - assume 

that the axle is an homogeneous ylinder. The dimensions of are given by: 

mass x length! fore x area 

[  =  = (3 2)
time2 x angle angle 

This torque then translates onto a tangential fore of magnitude F = L , on a mass attahed to

the axle at a distane L. The sign of the fore is suh that it opposes the twist. 

Let us now go bak to our problem, and write the equations of motion for the N pendulums \e 

will assume that: 

£ 

• The horizontal separation b e t w een pendulums is . 

N  

£ 

• The frst and last pendulum are at a distane from the respetive ends of the axle. 

2(N ) 

The tangential fore (perpendiular to the pendulum rod) due to gravity o n eah of the masses is 

1 

Fg 

= - Ng sin en 

, where n = 1 , N (3 3)
N 

For any t w o suessive masses, there is also a torque whenever en  = en+1 

This is generated by the 

twist in the axle, of magnitude en+1 

- en, o v er the segment of length £/(N 1) onneting the two 

rods Thus eah of the masses experienes a fore (equal in magnitude and opposite in sign) 

F = (N ) (en+1 

- en) , (3 4)
£L 

where the signs are suh that the fores tend to make en 

= en+1 

Putting all this together, we obtain 

the following set of equations for the angles: 

1 d 

2 e 1 (N )
NL 

1 

= - Ng sin e1 

(e2 

- e1) , (3 5)
N dt2 N £L 

The omponent along the rod is balaned by the rod itself, whih w e approximate as being rigid. 

9

T

T
�
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1 d 

2 e n 

1 

NL = - Ng sin en 

N dt2 N 

(N ) (N  1)
(en+1 

- en) - (en 

- en-1) , (3 6)
£L £L 

for n = 2 , , N - 1 , and 

1 d 

2 e N 

1 (N )
NL = - Ng sin eN 

- (eN 

- eN-1) (3 7)
N dt2 N £L 

These are the equations for N torsion oupled equal pendulums. 

Remark 3.2 To hek that the signs for the torsion fores seleted in these equations are orret, 

take the diferene between the n 

th and (n ) 

th equation. Then you should see that the torsion 

fore (due to the portion of the axle onneting the n 

th and (n ) 

th pendulums) is ating so as to 

make the angles equal. 

Remark 3.3 Note that the equations for the frst and last angle are diferent, beause the frst and 

last pendulum experiene a torsion fore from only one side. How would you modify these 

equations to aount for having one (or both) ends of the axle fxed? 

Continuum Limit. 

Now w e onsider the ontinuum limit, in whih w e let N and assume that the n 

th angle 

an b e written in the form: 

en(t) = e ( x n 

, t ) , (3 8) 

1 n 

where e = e(x, t) is a �nie" funtion (with derivatives) and xn 

= 

2 £ is the position of the 

N  1 

pendulum along the axle In partiular, note that: 

£ 

:x = xn+1 

- xn 

= (3 9)
N  1 

Take equation (3 6), and multiply it by N /£ Then we obtain 

d 

2 e N(N )
p L 

n 

= -p g sin en 

( e n 

- 2en 

en-1) ,
dt2 £ 

2 L 

+1 

where p = N /£ is the mass density p e r unit length in the N limit Using equation 

(3 9), this an b e written in the form: 

d 

2 e n 

N e n +1 

- 2en 

en-1 

p L = -p g sin en 

(3 10)
dt2 (N ) L (:x)2 

From equation (3 8) we see that - in the limit N (where : 0) - w e have: 

�2 en+1 

- 2en 

en-1 

e 

( x , t )
(:x)2 �x 

2 

n 

+
+ 1 � + 1 �

+ 1 �
:

+ 1

+ 1

!1

+

+ 1

+ 1

+
+ 1

+

!1

+
+ 1

� +

!1 !

+
! :

:

�

:
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Thus, fnally, we  obtain (for the ontinuum limit) the nonlinear wave equation (the "Sine-Gordon" 

equation): 

e 2 2 

tt       

 

 exx w e-
 

= sin , (3 11)-
 

 
where w = 

I 

g 

is
L

 the pendulum angular frequeny, and  = 

f
pL2

is a wave propagation speed 

 

 

(hek that the dimensions are orret). 

Remark 3.4 Boundary Conditions. 

What happens with the frst (3.5) and last (3.7) equations in the limit N    

As above, multiply (3.5) by 1/£. Then the equation beomes: 

p L d2 

 e 1 p g 

 

(N ) 
=

 p g  e2 e1
2

 sin e1  ( e 2 e1
2

 

  

) =
 

 sin   
dt N

 e
 

1
N

 

-
 

 

-
N £  

 L 

- -
 £L :x 

Thus, as N one obtains    

ex(0, t ) = 0  

This is just the statement that there are no torsion fores at the x = 0 end (sine the axle is free to 

rotate there). Similarly, one obtains: 

ex(£, t) = 0 , 

at the other end of the axle. How would these boundary onditions b e modifed if the axle 

where fxed at one (or both) ends? 

Kinks and Breathers for the Sine Gordon Equation. 

Equation (3 11), whose non-dimensional form is 

ett 

exx-
 

= sin-  e , (3 12) 

has a rather interesting history  Its frst appearane is not in the ontext of a physial ontext at all, 

but in the study of the geometry of surfaes with onstant negative Gaussian urvature Physial 

problems for whih it has been used inlude: Josephson juntion transmission lines, disloation in 

rystals, propagation in ferromagneti materials of waves arrying rotations in the magnetization 

diretion, et 10 

 Mathematially, i t i s a very  interesting beause it is one of the few physially 

important nonlinear partial diferential equations that an b e solved expliitly (by a 

tehnique known as Inverse Sattering, whih we will not desribe here) 

An important onsequene of equation (3 12) exat solvability, is that it possesses partile-like 

solutions, known as kinks, anti-kinks, and breathers. These are loalized traveling distur-

banes, whih preserve their identity when they interat In fat, the only efet of an interation 

is a phase shift in the partile positions after the interation: efetively, the "partiles" approah 

eah other, stay together briefy while they interat (this auses the "phase shift") and then depart, 

preserving their identities and original veloities This an all b e shown analytially, but here we 

will only illustrate the proess, using some omputational examples 

1O 

 or reviews see: 

A. C. Sott, 1970, Ative and Nonlineam Wave Pmopagation in Eletmonis, Wiley Intersiene, New York (page 250 . 

Barone, A.  .  sposito, C. J. Magee, and A. C. Sott, 1971, Theomy and Appliations of the Sine Gomdon Equation, 

    ���� �Rivista del Nuovo Cimento  , pp. 227�267. 

�
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The frst step is to present analytial expressions for the various partile-like solutions of 

equation (3 12) These turn out to be relatively simple to write 

Example 3.1 Kinks and Anti-Kinks. 

Equation (3.12) has some interesting solutions, that orrespond to giving the pendulums a full 21 

twist (e.g.: take one end pendulum, and give it a full 21 rotation). This generates a 21 twist wave 

that propagates along the pendulum hain. These waves are known as kinks or antikinks (depending 

on the sign of the rotation), and an be written expliitly. In fat, they are steady wave solutions,11 

for whih the equation redues to an D.D.E., whih an be expliitly solved. 

Let -1 1 b e a  onstant (kink, or antikink speed), and let z = ( x -  x ) b e a moving0 

oordinate, where the solution is steady - the "twist" will be entered at x =  t x , where x0 

is0 

the position at time t = 0 . Then the kink solution is given by 

e 

2    - 1 	  z
e = 2 aros = 4 artan exp - ,	 (3 13)

2    e  	 ( 

where ( =
 

1 - 2 is the kink width. This solution represents a propagating lokwise 21 rotation, 

from e = 2 m 1 as x (where m is an integer) to e = 2 ( m - 1) 1 as x , with most of the 

rotation onentrated in a region of width 0(() near x =  t x . The parameter  is determined 0 

(for example) by how fast the initial twist is introdued when the kink is generated. 

We note now that: 

2  e 

• From (3.13) it follows that et 

= - e x 

= 

( 

sin . Using this, it is easy to show that (3.13) 

2 

is a solution of equation (3.12). 

•	 The SineGordon equation is the simplest of a "lass" of models proposed for nulear inter

ations. In this interpretation, the kinks are nulear partiles. Sine (in the nondimensional 

version (3.12)) the speed o f light is 1, the restrition -1   1 is the relativisti restrition, 

and the fator ( inorporates the usual relativisti ontration. 

The anti-kink solution follows by replaing x x and t  -t in (3.13). It orresponds to a 

propagating ounterlokwise 21 rotation, and it is given by 

1 - e 

2    	 z
e = 2 aros = 4 artan exp	 (3 14)

2    1 e	 ( 

The kinks and antikinks are very nonlinear solutions. Thus, it is of some interest to study how 

they interat with eah other. Beause they are very loalized solutions (nontrivial only in a small 

region), when their enters are far enough they an be added. Thus, numerially it is rather easy to 

study their interations, by setting up initial onditions that orrespond to kinks and antikinks far 

enough that they do not initially interat. Then they are followed until they ollide. In the letures 

the results of numerial experiments of this type will be shown (the numerial method used in the 

experiments is is a "pseudospetral" method). 

11 

Solutions of the form ( ((x    , where  is a onstant: the speed of propagation. 

< c < � c t�
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Example 3.2 Breathers. 

A diferent kind of interesting solution is provided by the "breathers" - whih we handle next. A 

breather is a wave-pakage kind of solution (an osillatory wave, with an envelope that limits 

the wave to reside in a bounded r e gion of spae. These solutions vanish (exponentially) as x . 

This last property allows for easy numerial simulations of interations of breathers (and kinks). 

Dne an setup initial onditions orresponding to the interation of as many kinks and/or breathers 

as one may wish (limited only be the numerial resolution of the omputation), simply by separating 

them in spae. 

A breather solution is haraterized by two arbitrary onstants -1  d, V 1 . Then defne 

A 

B 

C 

p 

q 

Q 

= 

= 

= 

= 

= 

= 

d/ 1 - d2 , 

1/ 1 - V 2 , 

1 - d2 , 

C B ( V x - t t 0 

) , 

d B ( x - V t - x 0 

) , 

A sin(p)/ osh(q) ,

               
              

(3 15) 

where x0 

and t0 

are onstants, entering the envelope and the phase, respetively. Notie that the 

partial derivatives of Q (with respet to p and q) are given by 

Qp 

= A os(p)/ osh(q) and Qq 

= -Q tanh(q) (3 16) 

The breather solution (and its time derivative) is then given by: 

 
e = 4 artan(Q) , 

  
(3 17) 

2 

  et 

= -4 (1 Q ) ( C B Q p 

d B V Q q 

)

The breather solution is a wavepakage type of solution, with the phase ontrolled by p, and the 

envelope (ausing the exponential vanishing of the solution) by q). The wavepakage details are 

given by:  
speed . . . . . . . . . . . . . .  p 

= 1 /V , 

   
period . . . . . . . . . . . . . . p 

= 2 1/ ( B C ) , Phase. 

(3 18)   w ave-length . . . . . . . . . A p 

= 2 1/ ( B C V ) ,  
speed . . . . . . . . . . . . . .  = 

V , e Envelope. (3 19)
width . . . . . . . . . . . . . . 

A e 

= 2 1/ ( d B ) , 

Notie that, while the phase moves faster than the speed of "light" (i.e.: 1), the envelope always 

moves with a speed -1 1 , and has width proportional to 1 - V 2 . 

Finally, in ase you are familiar with the notion of group speed, notie that (for the linearized Sine

Gordon equation: ett 

- exx 

e = 0 ) we have: (group speed) = 1/(phase speed) - whih is exatly 

the relationship satisfed by e 

= V and p 

= 1 /V for a breather. This is beause, for (x( large, the 

breathers must satisfy the linearized equation. Thus the envelope must move at the group veloity 

orresponding to the osillations wavelength. 

! �1

< d <

p

p

p

+

:

+ + :

T

< V <
p
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Remark 3.5 Pseudo-spetral Numerial Method for the Sine-Gordon Equation. 

Here we will give a rough idea of a numerial method that an be used to solve the SineGordon 

equation. This remark will only make sense to you if you have some familiarity with Fourier Series 

for periodi funtions. 

The basi idea in spetral methods is that the numerial diferentiation of a (smooth) periodi fun

tions an be done muh more eÆiently (and aurately) on the "Fourier Side" - sine there it 

amounts to term by term multipliation of the nth 

 Fourier oeÆient by  n. Dn the other hand, 

nonlinear operations (suh as alulating the square, point by point, of the solution) an be done 

eÆiently on the "Physial Side". 

Thus, in a numerial omputation using a pseudospetral method, all the operations involving taking 

derivatives are done using the Fourier Side, while all the nonlinear operations are done diretly 

on the numerial solution. The bakandforth alulation of Fourier Series and their inverses is 

arried by the FFT (Fast Fourier Transform) algorithm - whih is a very eÆient algorithm for 

doing Fourier alulations. 

Unfortunately, a naive implementation of a spetral sheme to solve the SineGordon equation would 

require periodi in spae, solutions. But we need t o be  able to solve for solutions that are mod-21 

periodi (suh as the kinks and antikinks), sine the solutions to the equation are angles. Thus, 

we need to get around this problem. 

In a naive implementation of a spetral method, we would write the equation as 

ut 

= v , 

(3 20)
v

 

 t  

 

= u xx 

s nu ,-  

) 

where u = e and v = et. Next we would disretize spae using a periodi uniform mesh (with a large 

enough period), and would evaluate the right hand side using FFT's to alulate derivatives. This 

would redue the P.D.E. to some large D.D.E., involving all the values of the solution (and its time 

derivative) at the nodes in the spae grid. This D.D.E. ould then be solved using a standard D.D.E. 

®solver - say, ode45 in MATLAB.  

In order to use the idea a bove  in a way that allows us to solve the equation with mod21 periodiity 

in spae, we need to be able to evaluate the derivative uxx  

 

in a way that ignores jumps by multiples 

of 21 in u. The following trik works in doing this: 

Introdue U = eiu : Then 

(U )2 U U 

 x - xx
uxx 

= (3 21)
U2 

gives a formula for uxx 

that ignores 21 jumps in u. Warning: In the atual implementation one 

must use 

(Ux)2 - U U 

uxx 

= -imag 

xx 

U2 

to avoid small imaginary parts in the answer (aused by numerial errors). 

4 Suggested problems. 

A list of suggested problems that go along with these notes follow: 

i

 !
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1 Chek the derivation of the system of equations (2 20) 

2 Derive the ontinuum equation in (2 21) 

3 Look at the end of setion 2, under the title "General Motion: String and Rods" Derive 

ontinuum equations desribing the motion (in the plane) of a string without onstraints 

4 Look at the end of setion 2, under the title "General Motion: String and Rods" Add bending 

springs to the model, and derive ontinuum equations desribing the motion (in the plane) of 

a rod without onstraints 

5 Do the hek stated in remark 3 2 

6 Answer the question in remark 3 3 

7 Do the dimensions hek stated below equation (3 11) 

8 Answer the question in remark 3 4 

9 Show that (3 13) is a solution (there is a hint about how to do this a few lines below the 

equation) 

10 Use a omputer to plot the solution in (3 13), as a funtion of z, for a few hoies of   

11 Show that (3 17) is a solution 

12 Use a omputer to plot the solution in (3 17), as a funtion of x, for various times and hoies 

of parameters 

13 Implement a numerial  ode to alulate interations of kinks, breathers, et , using the ideas 

skethed in remark 3 5 
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