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Abstrat 

These notes give examples illustrating how onservation priniples are used to obtain (phe

nomenologial) ontinuum models for physial phenomena. The general priniples are pre

sented, with examples from traÆ fow, river fows, granular fows, gas dynamis and difusion. 
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1 Introdution. 

In formulating a mathematial model for a ontinuum physial system, there are three basi steps 

that are often used: 

A.	 Identify appropriate onservation laws (e g mass, momentum, energy, et) and their orre-

sponding densities and fuxes 

B.	 \rite the orresponding equations using onservation 

C.	 Close the system of equations by proposing appropriate relationships between the fuxes and 

the densities 

Of these steps, the mathematial one is the seond \hile it involves some subtlety, one you 

understand it, its appliation is fairly mehanial The frst and third steps involve p h ysial issues, 

and (generally) the third one is the hardest one, where all the main diÆulties appear in developing 

a new model In what follows we will go through these steps, using some pratial examples to 

illustrate the ideas 

Of ourse, one a model is formulated, a fourth step arises, whih is that of analyzing and validating 

the model, omparing its preditions with observations and orreting it whenever needed This 

involves simultaneous mathematial and physial thinking You should never forget that a model is 

no better than the approximations (expliit and/or impliit) made when deriving it. It is never a question 

of just "solving" the equations, forgetting what is behind them 

2 Continuum Approximation; Densities and Fluxes. 

The modeling of physial variables as if they were a ontinuum feld is almost always an approxima-

tion For example, for a gas one often talks about the density p, or the fow veloity u, and thinks 

of them as funtions of spae and time: p = p(x  )  or u = u(x  ) But the fat is that a gas is 

made up by very many disrete moleules, and the onepts of density, or fow veloity, only make 

sense as loal averages These averages must be made over sales large enough that the disreteness 

of the gas beomes irrelevant, but small enough that the notion of these loal averages varying in 

spae and time makes sense 

Thus, in any ontinuum modeling there are several sales. On the one hand one has the 

"visible" sales, whih are the ones over whih the mathematial variables in the model vary 

(densities, fuxes) On the other hand, there are the "invisible" sales, that pertain to the miro-

sales that have been averaged in obtaining the model The seond set of sales must be muh 

smaller than the frst set for the model to b e v alid. Unfortunately, this is not always the 

ase, and whenever this fails all sort of very interesting (and largely open) problems in modern 

siene and engineering arise 

Note that the reason people insist on trying to use ontinuum type models, even in situations where 

one runs into the diÆulties mentioned at the end of the last paragraph, is that ontinuum models 

are often muh simpler (both mathematially and omputationally) than anything else, and supply 

general understanding that is often very valuable 

The frst step in the modeling proess is to identify onserved quantities (e g mass) and defne the 

appropriate densities and fuxes - a s in the following examples 

...
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2.1 Examples 

Example 2.1 River Flow (a one dimensional example). 

Consider a nie river (or a hannel) fowing down a plain (e.g. the Mississippi, the Nile, et.). 

Let x be the length oordinate along the river, and at every point (and time) along the river let 

A = A(x ) be the flled (by water) ross-setion of the river bed. 

We note now that A is the volume density (volume per unit length) of water along the river. We 

also note that, sine water is inompressible, volume is onserved.1 Finally, let Q = Q(x ) be 

the volume fux of water down the river (i.e.: volume per unit time). Notie that, if u = u(x ) is 

the average fow veloity down the river, then Q = uA (by defnition of u). 

Thus, in this ase, an appropriate onservation law is the onservation of volume, with orre-

sponding density A and fux Q. We note that both A and Q are  re  gularly measured at various points 

along important rivers. 

Example 2.2 TraÆ Flow (a one dimensional example). 

Consider a one lane road, in a situation where there are no ross-roads (e.g.: a tunnel, suh as the 

Linoln tunnel in NYC, or the Summer tunnel in Boston). Let x be length along the road. Under 

"heavy" traÆ onditions,2 we an introdue the notions of traÆ density p = p(x ) (ars per 

unit length) and traÆ fow q = q(x ) (ars per unit time). Again, we have q = up where u is 

the average ar fow veloity down the road. 

In this ase, the appropriate onservation law is, obviously, the onservation of ars. Notie that 

this is one example where the ontinuum approximation is rather borderline (sine, for example, the 

loal averaging distanes are almost never muh larger than a few ar separation lengths). Never-

theless, as we will see, one an gain some very interesting insights from the model we will develop 

(and some useful pratial fats). 

Example 2.3 Heat Condutivity. 

Consider the thermal energy in a hunk of solid material (suh as, say, a piee of opper). Then 

the thermal energy density (thermal energy per unit volume) is given by e =  p T ( x ) , where 

T is the temperature,  is the speif heat per unit mass, and p is the density of the material 

(for simpliity we will assume here that both  and p are onstants). The thermal energy fow, 

Q = Q(x ) is now a vetor, whose magnitude gives the energy fow aross a unit area normal to 

the fow diretion. 

In this ase, assuming that heat is not being lost or gained from other energy forms, the relevant 

onservation law is the onservation of heat energy. 

Example 2.4 Steady State (dry) Granular Flow. 

Consider steady state (dry) granular fow down some ontainer (e.g. a silo, ontaining some dry 

granular material, with a hole at the bottom). At every point we haraterize the fow in terms of two 

veloities: an horizontal (vetor) veloity u = u(x y z ) , and a vertial (salar) veloity 

v = v(x y z ) , where x and y are the horizontal length oordinates, and z is the vertial one. 

1 \e are negleting here suh things as evaporation, seepage into the ground, et. This annot always be done. 

2 \hy m ust we assume "heavy" traÆ? 
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The mass fow rate is then given by Q = p [u  ] , where p is the mass density - whih we will 

assume is nearly onstant. The relevant onservation is now the onservation of mass. 

This example is diferent from the others in that we are l o oking at a steady state situation. We also 

note that this is another example where the ontinuum approximation is quite often "borderline", 

sine the sale separation between the grain sales and the fow sales is not that great. 

Example 2.5 Invisid Fluid Flow. 

For a fuid fowing in some region of spae, we onsider now two onservation laws: onserva

tion of mass and onservation of linear momentum. Let now p = p(x ) , u = u ( x ) and 

p = p(x ) b e, respetively, the fuid density, fow veloity, and pressure - where we use either 

[u v w] or [u1 ] to denote the omponents of u, and either [x y z] or [x1  x  x] to denote the 2  2  

omponents of x. Then: 

• The mass onservation law density is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p .  

• The mass onservation law fow is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p u .  

• The linear momentum onservation law density is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p u .  

• The linear momentum onservation law fow is . . . . . . . . . . . . . . . . . . . . . . . . . . . . p u u  p I . 

The frst two expressions above are fairly obvious, but the last two (in partiular, the last one) 

require some explanation. First of all, momentum is a vetor quantity. Thus its onservation is 

equivalent to three onservation laws, with a vetor density and a rank two tensor fow (we explain 

this below). Seond, momentum an be t r ansferred f r om one part of a liquid to another in two ways: 

Advetion: as a parel of fuid moves, it arries with it some momentum. Let us onsider this 

mehanism omponent by omponent: The momentum density omponent p u i 

is adveted with a 

fow rate p u i 

u = p [ u i 

u u 2 i 

u ] . Putting all three omponents together, we get for the momen-1 i  

tum fux (due to advetion) the expression p [ui 

uj 

] = p u u - i.e., a r ank two tensor, where e ah 

row (freeze the frst index) orresponds to the fux for one of the momentum omponents. 

Fores: momentum is transferred by the fores exerted by one parel of fuid on another. If we 

assume that the fuid is invisid, then these fores an only be normal, and are given by the pres-

sure (this is, atually, the "defnition" of invisid). Thus, again, let us onsider this mehanism 

omponent by omponent: the momentum transfer by the pressure in the diretion given by the unit 

vetor4 ei 

= [ Æ i j 

] ,  orresponding to the density p u i 

, is the fore per unit area (normal to e ) by the 

fuid. Thus the orresponding momentum fow vetor is p ei. Putting all three  omponents together, 

we get for the momentum fux (due to pressure fores) the expression p [Æi j 

] = p I - again a rank 

two tensor, now a salar multiple of the identity rank two tensor I. 

Regarding the zero visosity (invisid) assumption: Fluids an also exert tangential fores, whih 

also afet the momentum transfer. Momentum an also be transferred in the normal diretion by 

difusion of "faster" moleules into a region with "slower" moleules, and vieversa. Both these 

efets are haraterized by the visosity oeÆient - whih here we assume an be negleted. 

� 

Note that in some of the examples we have given only one onservation law, and in others two 

(further examples, with three or more onservation laws invoked, exist) The reason will beome 

lear when we go to the third step (step C in setion 1) In fat, steps A and C in setion 1 are 

intimately linked, as we will soon see 

3 If you do not know what a tensor is, just think of it as a vetor with more than one index (the rank is the numb e r 

of indexes). This is all you need to know to understand what follows. 

4 Here Æ8 j  

is the Kroneker delta, equal to 1 if i = j, and to 0 if i  = j. 
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3 Conservation Laws in Mathematial Form. 

In this setion we assume that we have identifed some onservation law, with onserved density 

p = p(x ), and fux F = F(x ),  and derive mathematial formulations for the onservation hy-

pothesis In other words, we will just state in mathematial terms the fat that p is the density for 

a onserved quantity, with fux F 

First onsider the one dimensional ase (where the fux F is a salar, and there is only one spae 

oordinate: x) In this ase, onsider some (fxed) arbitrary interval in the line n =  a  x  b , 

and let us look at the evolution in time of the onserved quantity inside this interval At a n y given 

time, the total amount of onserved stuf in n is given by (this by defnition of density)  
b 

N( ) = p ( x ) dx . (3 1) 

l 

Further, the net rate at whih the onserved quantity enters n is given by (defnition of fux) 

R( ) = F ( a ) - F (b ) . (3 2) 

It is also possible to have soures and sinks for the onserved quantity 

5 In this ase let 

s = s(x ) b e the total net amount of the onserved quantity, p e r unit time and unit length, 

provided by the soures and sinks For the interval n we have then a net rate of added onserved 

stuf, p e r unit time, given by  
l

b 

S( ) = s ( x ) dx . (3 3) 

The onservation law an now b e stated in the mathematial form 

d 

N = R S (3 4)
d 

whih must apply for any hoie of interval n. Sine this equation involves only integrals of 

the relevant densities and fuxes, it is known as the Integral Form of the Conservation Law. 

Assume now that the densities and fuxes are nie enough to have nie derivatives 

Then we an write: 

d 

 
b � 

 
b � 

N = p ( x ) dx and R = - F ( x ) dx . (3 5)
d l 

� l 

�x 

Equation (3 4) an then b e re-written in the form   
b � � 

p ( x ) F ( x ) - s(x ) dx = 0 (3 6)
l � �x 

whih m ust apply for any  hoie of the interval n It follows that the integrand above in (3 6) must 

vanish identially This then yields the following partial diferential equation involving the density, 

fux and soure terms: 

� � 

p ( x ) F ( x ) = s ( x ) . (3 7)
� �x 

This equation is known as the Diferential Form of the Conservation Law. 

5 As an illustration, in the invisid fuid fow ase of example 2.5, the efets of gravity translate into a vertial 

soure of momentum, of strength  9  per unit volume  where 9 is the aeleration of gravity. Other body fores 

have similar efets. 
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Remark 3.1 You may wonder why we even bother to give a name to the form of the equations 

in (3.4), sine the diferential form in (3.7) appears so muh more onvenient to deal with (it 

is just one equation, not an equation for every possible hoie of n). The reason is that it is 

not always possible to assume that the densities and fuxes have nie derivatives. Oftentimes the 

physial systems involved develop, as they evolve,6 short enough sales that fore the introdution of 

disontinuities into the densities and fuxes - and then (3.7) no longer applies, but (3.4) still does. 

Shok waves are the best known example of this situation. Examples of shok waves you may be 

familiar with are: the soni boom produed by a supersoni airraft; the hydrauli jump ourring 

near the bottom of the disharge ramp in a large dam; the wave-front assoiated with a food moving 

down a river; the bakward faing front of a traÆ jam; et. Some shok waves an ause quite 

spetaular efets, suh as those produed by supernova explosions. 

Now let us onsider the multidimensional ase, when the fux F is a vetor In this ase, 

onsider some (fxed but arbitrary) region in spae n, with boundary �n , and inside unit normal 

along the boundary nf \e will now look at the evolution in time of the onserved quantity inside 

this region At any given time, the total amount of onserved stuf in n is given by 

N( ) = p ( x ) dV . (3 8)
k 

On the other hand, the net rate at whih the onserved quantity enters n is given by 

R( ) = F ( x )  nf dS . (3 9) 

� k 

Let also s = s(x ) be the total net amount of onserved quantity, per unit time and unit volume, 

provided by a n y soures and/or sinks For the region n we h a v e then a net rate of added onserved 

stuf, p e r unit time, given by 

S( ) = s ( x ) dV . (3 10)
k 

The onservation law an now b e stated in the mathematial form (ompare with equation (3 4)) 

- Integral Form of the Conservation Law: 

d 

N = R S (3 11)
d 

whih must apply for any hoie of the region n.  

If the densities and fuxes are nie enough to have nie derivatives, we an write:  

d 

k 

� 

N = p ( x ) dV and R = -
k 

div(F(x )) dV (3 12)
d � 

where we h a v e used the Gauss divergene theorem for the seond integral Equation (3 11) an then 

b e re-written in the form 

p ( x ) div(F(x )) - s(x ) dV = 0 (3 13)
�k 

� 

6 Even when starting with very nie initial onditions. 
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whih m ust apply for any  hoie of the region n It follows that the integrand above in (3 13) must 

vanish identially This then yields the following partial diferential equation involving the density, 

fux and soure terms (ompare with equation (3 7)) 

� 

p ( x ) div(F(x )) = s(x ) . (3 14)
� 

This equation is known as the Diferential Form of the Conservation Law. 

Remark 3.2 In the ase of a vetor onservation law, the density p and the soure term s 

will both be vetors, while the fux F will be a rank two tensor (eah row being the fux for the 

orresponding element in the density vetor p). In this ase equation (3.14) is valid omponent by 

omponent, but an be given a vetor meaning if we defne the divergene for a rank two tensor 

F = [ F i j 

] as follows:    �  1div(F) = F i j
�x jj 

so that div(F) is a vetor (eah element orresponding to a row in F). You should hek that this is 

orret.7 

4 Phenomenologial Equation Closure. 

From the results in setion 3 it is lear that eah onservation priniple an b e used to yield an 

evolution equation relating the orresponding density and fux However, this is not enough to 

provide a omplete system of equations, sine eah onservation law provides only one equation, 

but requires two (in priniple) "independent" variables Thus extra relations b e t w een the fuxes 

and the densities must b e found to b e able to formulate a omplete mathematial model This 

is the Closure Problem, and it often requires making further assumptions and approximations 

about the physial proesses involved 

Closure is atually the hardest and the subtler part of any model formulation How g o o d a model 

is, typially depends on how w ell one an do this part Oftentimes the physial proesses onsidered 

are very omplex, and no g o o d understanding of them exist In these ases one is often fored to 

make "brute fore" phenomenologial approximations (some formula - with a few free parameters 

- relating the fuxes to the densities is proposed, and then it is ftted to diret measurements) 

Sometimes this works reasonably well, but just as often it does not (produing situations with very 

many diferent empirial fts, eah working under some situations and not at all in others, with no 

lear way of knowing "a priori" if a partiular ft will work for any given ase) 

\e will illustrate how one goes about resolving the losure problem using the examples introdued 

earlier in subsetion 2 1 These examples are all "simple", in the sense that one an get away with 

algebrai formulas relating the fuxes with the densities However, this is not the only possibility, 

and situations where extra diferential equations must be introdued also arise The more omplex 

the proess being modeled is, the worse the problem, and the harder it is to lose the system (with 

very many hallenging problems still not satisfatorily resolved) 

 �
7 Reall that, for a vetor feld, div(v) =  j  

.  
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An important point to be made is that the formulation of an adequate mathematial model 

is only the beginning. As the examples below will illustrate, it is often the ase that the 

mathematial models obtained are quite ompliated (refeting the fat that the phenomena being 

modeled are omplex), and often poorly understood Thus, even in ases where aurate mathe-

matial models have been known for well over a entury (as in lassial fuids), there are plenty 

of open problems still around and even now new, un-expeted, behaviors are being disovered 

in experimental laboratories The fat is that, for these omplex phenomena, mathematis alone 

is not enough There is just too muh that an happen, and the equations are too ompliated to 

have expliit solutions The only possibility of advane is by a simultaneous approah inorporating 

experiments and observations, numerial alulations, and theory 

4.1 Examples 

Example 4.1 River Flow (see example 2.1). 

In this ase we an write the onservation equation 

At 

Qx 

= 0 (4 1) 

where A and Q were introdued in example 2.1, and we ignore any soures or sinks for the water 

in the river. In order to lose the model, we now laim that it is reasonable to assume that Q 

is a funtion of A; that is to say Q = Q(A x) - for a uniform, man-made hannel, one has 

Q = Q(A). We justify this hypothesis as follows: 

First: For a given river bed shape, when the fow is steady (i.e.: no hanges in time) the average 

fow veloity u follows from the balane between the fore of gravity pulling the water down the 

slope, and the frition fore on the river bed. This balane depends only on the river bed shape, its 

slope, and how muh water there is (i.e. A). Thus, under these onditions, we have u = u(A x). 

Consequently Q = Q(A x) = u ( A x) A. 

Seond: As long as the fow in the river does not deviate too muh from steady state ("slow" 

hanges), the we an assume that the relationship Q = Q(A x) that applies for steady fow remains 

(approximately) valid. This is the quasiequilibrium approximation, whih is often invoked 

in problems like this. How well it works in any given situation depends on how fast the proesses 

leading to the equilibrium situation (the one that leads to Q = Q(A x)) work - relative to the time 

sales of the river fow variations one is interested in. For atual rivers and hannels, it turns out 

that this approximation is good enough for many appliations. 

Of ourse, the atual funtional relationship Q = Q(A x) (to be used to model a speif river) 

annot be  alulated theoretially, and must be extrated f r om atual measurements of the river fow 

under various onditions. The data is then ftted b y ( r elatively simple) empirial formulas, with free 

parameters seleted for the best possible math. 

However, it is possible to get a qualitative idea of roughly how Q depends on A, by the 

following simple argument: The fore pulling the water downstream (gravity) is proportional to the 

slope of the bed, the aeleration of gravity, the density of water, and the volume of water. Thus, 

roughly speaking, this fore has the form Fg 

� g 

A (where g 

= g(x) is some funtion). On the 

other hand, the fore opposing this motion, in the simplest possible model, an be thought as being 

...

+ ;
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proportional to the wetted p erimeter of the river bed ( r oughly P e A) times the fritional fore o n  
the bed (roughly proportional to the veloity u). That is Ff 

f 

u A, for some frition oeÆient  
f 

. These two fores must balane (Fg 

= Ff 

), leading to u u A (where u 

= g/f), thus: 

A  2Q u 

. (4 2) 

Of ourse, this is too simple for a real river. But the feature of the fux inreasing faster than linear 

is generally true - so that Q as a funtion of A produes a onave graph, with dQ/dA > 0 

and d2Q/dA2 > 0. 

Example 4.2 TraÆ Flow (see example 2.2). 

In this ase we an write the onservation equation 

pt 

qx 

= 0 (4 3) 

where p and q were introdued in example 2.2, and we ignore any soures or sinks for ars (from 

road exit and inoming ramps, say). Just as in the river model, we lose now the equations by 

laiming that it is reasonable to assume that q is a funtion of p, that is to say q = q(p x) - for 

a nie, uniform, road, one has q = q(p). Again, we use a quasiequilibrium approximation to 

justify this hypothesis: 

Under steady traÆ onditions, it is reasonable to assume that the drivers will adjust their ar 

speed to the loal density (drive faster if there are few ars, slower if there are many). This yields 

u = u(p x), thus q = u(p x)p = q(p x). Then, if the traÆ onditions do not vary too rapidly, 

we an assume that the equilibrium relationship q = q(p x) will still be (approximately) valid -

quasi-equilibrium approximation. 

As in the river fow ase, the atual funtional dependene to be used for a given road must follow 

from empirial data. Suh a ft for the Linoln tunnel in NYC is given by! 

q = a p log(pj 

/p) (4 4) 

where a = 17 . 2 mph, and pj 

= 228 vpm (vehiles per mile). The generi shape of this formula 

is always true: q is a onvex funtion of p, reahing a maximum fow rate qm 

for some value 

p = pm, and then dereases bak to zero fow at a jamming density p = pj 

. In partiular, dq/dp is 

a dereasing funtion of p, with d2q/dp2 < 0. 

For the formula above in (4.4), we have: pm 

= 83 vpm and qm 

= 1430 vph (vehiles per hour), with 

a orresponding fow speed um 

= qm/pm 

= a. The very existene of pm 

teahes us a rather useful 

fat, even before we solve any equation: in order to maximize the fow in a highway, we should 

try to keep the ar density near the optimal value pm. This is what the lights at the entranes to 

freeways attempt to do during rush hour. Unfortunately, they do not work very well for this purpose, 

as some analysis with the model above (or just plain observation of an atual freeway) will show. 

In this example the ontinuum approximation is rather borderline. Nevertheless, the equations have 

the right qualitative (and even rough quantitative) behavior, and are rather useful to understand 

many features of how heavy traÆ behaves. 

8 Greenberg, H., 1959. An analysis of traÆ fow. Oper. Res. 7:79�85. 
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Example 4.3 Heat Condutivity (see example 2.3). 

In this ase we an write the onservation equation 

 p T t 

div(Q) = s (4 5) 

where  p T and Q were introdued in example 2.3, and s = s(x ) is the heat supplied (per unit 

volume and unit time) by any soures (or sinks) - e.g. eletrial urrents, hemial reations, et. 

We now omplete the model by observing that heat fows from hot to old, and postulating that 

the heat fow aross a temperature jump is proportional to the temperature diferene (this an be 

heked experimentally, and happens to be an aurate approximation). This leads to Fik's Law 

for the heat fow: 

Q = -� VT (4 6) 

where � is the oeÆient of thermal ondutivity of the material.9 For simpliity we will 

assume here that all of , p, and � are onstant - though this is not neessarily true in general. 

Substituting (4.6) into (4.5), we then obtain the heat or difusion equation: 

Tt 

= v V2T f (4 7) 

� s 

where v = is the thermal difusivity of the material, and f = . 

 p  p 

In deriving the equation above, we assumed that the heat was ontained in a hunk of solid material. 

The reason for this is that, in a fuid, heat an also be t r ansported by motion of the fuid (onvetion). 

In this ase (4.6) above must be modifed to: 

Q = -� VT  p T u (4 8) 

where u = u(x ) is the fuid veloity. Then, instead of (4.7), we obtain 

Tt 

div(uT ) = v V 

2 T f . (4 9) 

In fat, this is the simplest possible situation that an our in a fuid. The reason is that, generally, 

the fuid density depends on temperature, so that the fuid motion ends up oupled to the temperature 

variations, due to buoyany fores. Then equation (4.g) must be augmented with the fuid equations, 

to determine u and the other relevant fuid variables - see example 4.5. 

Length2 

Remark 4.1 Note that v has dimensions . Thus, given a length L, a time sale is provided 

Time 

by T = L2 /v. Roughly speaking, this is the amount of time it would take to heat (or ool) a region 

of size L by difusion alone. If you go and hek the value of v for (say) water, you will fnd out 

that it would take a rather long time to heat even a up of tea by difusion alone (you should do this 

alulation). The other term in (4.g) is ruial in speeding things up. 

Remark 4.2 If the fuid is inompressible, then div(u) = 0 (see example 4.5), and equation (4.g) 

takes the form 

Tt  u ) T = v V 

2 T f . (4 10) 

Note that the left hand side in this equation is just the time derivative of the temperature in a fxed 

parel of fuid, as it is being arried around by the fow. 

9 " must be measured experimentally, and varies from material to material. 
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Remark 4.3 Equations suh as (4.g) and (4.10) are satisfed not just by the temperature, but 

by many other quantities that propagate by difusion (i.e.: their fuxes satisfy Fik's Law (4.6)). 

Examples are given by any hemials in solution in a liquid (salt, sugar, olorants, pollutants, et.). 

Of ourse, if there are any reations these hemials partiipate in, these reations will have to be 

inorporated into the equations (as soures and sinks). 

Example 4.4 Steady State (dry) Granular Flow (see example 2.4). 

In this ase we an write the onservation equation 

div(Q) = 0	 (4 11) 

where Q = p[u  ] is as in example 2.4, and there are no time derivatives involved beause we 

assumed that the density p was nearly onstant (we also assume that there are no soures or sinks 

for the media). These equation involves three unknowns (the three fow veloities), so we need some 

extra relations between them to lose the equation. 

The argument now is as follows: as the grain partiles fow down (beause of the fore of gravity), 

they will also - more or less randomly - move to the sides (due to partile ollisions). We laim 

now that, on the average, it is easier for a partile to move from a region of low vertial veloity to 

one of high vertial veloity than the reverse.10 The simplest way to model this idea i s t o p r opose that 

the horizontal fow veloity u is proportional to the horizontal gradient of the vertial fow veloity 

v. Thus we propose a law of the form: 

u = b V v (4 12)� 

where b is a oeÆient (having length dimensions) and V denotes the gradient with re� 

spet to the horizontal oordinates x and y. Two important points: 

A.	 Set the oordinate system so that the z axis points down. Thus v is positive when the fow is 

downwards, and b above is positive. 

B.	 Equation (4.12) is a purely empirial proposal, based on some rough intuition and experimental 

observations. However, it works. The preditions of the resulting model in equation (4.13) 

below have been heked against laboratory experiments, and they math the observations, 

provided that the value of b is adjusted properly (typially, b must be taken around a few 

partile diameters). 

Substituting (4.12) into (4.11), using the formula for the divergene, and eliminating the ommon 

onstant fator p, we obtain the following model equation for the vertial veloity v: 

0 =	 v b V 

2 v = v b ( v xx 

v  )  .  (4 13) 

� 

Note that this is a difusion equation, exept that the role of time has been taken over by the vertial 

oordinate z. Mathematial analysis of this equation shows that it only makes sense to solve it 

for z dereasing; i.e.: from bottom to top in the ontainer where the fow takes plae. 

This, atually, makes perfet physial sense: if you have a ontainer full of (say) dry sand, and 

you open a hole at the bottom, the motion will propagate upwards through the media. On the other 

hand, if you move the grains at the top, the ones at the bottom will remain undisturbed. In other 

words, information about motion in the media propagates upward, not downwards. 

1OIntuitively: where the fow speed is higher, there is more spae between partiles where a new partile an move 

into. 
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Example 4.5 Invisid Fluid Flow (see example 2.5). 

In this ase, using the densities and fuxes introdued in example 2.5, we an write the onservation 

equations: 

pt 

div(p u) = 0 (4 14) 

for the onservation of mass, and 

(p u)t 

div(p u u) V p = F (4 15) 

for the onservation of momentum. Here F = F(x ) denotes the body fores11 (whih are mo-

mentum soures), and we have used the mathematial identity (you should hek this) div(p I) = V p . 

A nother easy to hek mathematial identity is div(u m) = ( div(m)) u  ( m  V ) u . Using this 

seond identity, with m = p u, in equation (4.15), and substituting from equation (4.14) to elimi-

nate the term ontaining the divergene of m, we obtain: 

p (ut V u ) u ) V p = F . (4 16)

The problem now is that we have four equations and fve unknowns (density, pressure and the three 

veloities). An extra equation is needed. Various possibilities exist, and we illustrate a few 

below. 

Inompressibility Assumption (liquids). 

Liquids are generally very had to ompress. This means that, as a parel of fuid is arried a r ound by 

the fow, its volume (equivalently, its density) will hange very little. If we then make the assumption 

that the liquid density does not hange at all (due to pressure hanges ... it ertainly may hange due 

to temperature hanges, or solutes12 in the liquid), then we obtain the following additional equation: 

pt V u ) p = 0 . (4 17)

This equation simply states that the time derivative of the density, following a parel of fuid as it 

moves, vanishes. In other words: the fuid is inompressible (though it need not have a onstant 

density). In this ase we an write a omplete system of equations for the fuid motion. Namely:  
0 = pt  V u ) p   
0 = div(u) (4 18)   F = p (ut  V u ) u ) V p 

where the seond equation follows from (4.14), upon use of (4.17). These are known as the Inom

pressible Euler Equations for a fuid. The "simplest" situation arises when p an be assumed 

onstant, and then the frst equation above is not needed. However, even in this ase, the behavior 

of the solutions to these equations is not well understood - and extremely rih. 

Remark 4.4 The equations above ignore visous efets, important in modeling many physial sit-

uations. Visosity is inorporated with the method used in example 4.3, by adding to the momentum 

fux omponents proportional to derivatives of the fow veloity u. What results from this are the 

Inompressible NavierStokes Equations. 

Furthermore, heat ondution efets an also be  onsidered (and are n e e ded t o  orretly model many 

physial situations). This requires the introdution of a new independent variable into the equations 

(temperature), and the use of one more onservation law (energy). 

11 Suh as gravity.  

12 For example, salt.  
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Gas Dynamis. 

For gases one annot assume inompressibility. In this ase, one must introdue another onser-

vation law (onservation of energy), and yet another variable: the internal energy p e r unit 

mass e. This results in fve equations (onservation of mass (4.14), onservation of momentum 

(4.15), and onservation of energy) and six variables (density p, fow veloity u, pressure p and 

internal energy e). At this stage thermodynamis omes to the resue, providing an extra rela-

tionship: the equation of state. For example, for an ideal gas with onstant speif heats 

(polytropi gas) one has: 

p 

e = v 

T and p = R p T = Equation of state: e = (4 19)
(r - 1) p 

where v 

is the speif heat at onstant v olume, p 

is the speif heat at onstant pressure, 

R = p 

- v 

is the gas onstant and r = p/v 

is the ratio of speif heats. 

A simplifying assumption that an be made, appliable in some ases, is that the fow is isentropi.1 

In this ase the pressure is a funtion of the density only, and (4.14) and (4.15) then form a omplete 

system: the Isentropi Euler Equations of Gas Dynamis. For a polytropi gas: 

p = �p 

i (4 20) 

where is a onstant. In one dimension the equations are 

pt p u ) x 

= 0 and (p u ) t  p u 

2 p ) x 

= 0 (4 21) 

where p = p(p). 

Remark 4.5 The losure p r oblem in this last example involving gas dynamis seemed r ather simple, 

and (apparently) we did not have to all upon any "quasi-equilibrium" approximation, or similar. 

However, this is so only beause we invoked an already existing (mayor) theory: thermodynamis. 

In efet, in this ase, one annot get losure unless thermodynamis is developed frst (no small 

feat). Furthermore: in fat, a quasi-equilibrium approximation is involved. Formulas suh as the ones 

above in (4.19, apply only for equilibrium thermodynamis! Thus, the losure p r oblem for this example 

is resolved in a fashion that is exatly analogous to the one used in several of the previous examples. 

Remark 4.6 In the fashion similar to the one explained i n r emark 4.4 for the inompressible ase, 

visous and heat ondution efets an be inorporated into the equations of Gas Dynamis. The 

result is the NavierStokes Equations for Gas Dynamis. 

5 Conluding Remarks. 

Here we h a v e presented the derivation (using onservation priniples) of a few systems of equations 

used in the modeling of physial phenomena The study of these equations, and of the physial 

phenomena they model, on the other hand, would require several lifetimes (and is still proeeding) 

In partiular, notie that here we have not even mentioned the very important subjet of 

boundary onditions (what to do at the boundaries of, say, a fuid) This introdues a whole set 

of new ompliations, and physial efets (suh as surfae tension) 

13 That is: the entropy is the same everywhere. 
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