18.311 — MIT (Spring 2014)

Rodolfo R. Rosales

March 16, 2014.

Problem Set # 04. Due: Friday April 4.

IMPORTANT:

— Turn in the regular and the special problems **stapled in two SEPARATE** packages.

- **PRINT** your name in each page of your answers. ***PRINT*** (the pencil will not break).

— In page one of each package **print the names** of the other members of your group.

Contents

1 Regular Problems.			1
	1.1	Statement: Haberman problem 69.01	1
		Rate of change of density for moving observer	1
	1.2	Statement: TFPa11. Longest queue through a light	2
		Last car to make green light. Longest queue through a light	2
	1.3	DiAn21 statement: Non-dimensional form	2
	1.4	Statement: TFPb09. Quasi-linear equation solution	2
		Solve a simple quasi-linear problem using characteristics	2
	1.5	Statement: TFPa21. Characteristics for 3D scalar quasi-linear equation	2
		Write the characteristic equations for 3-D scalar quasi-linear equations	2
		Find the general solution for a simple linear equation	2
	1.6	Statement: TFPa18. Envelopes for families of curves	3
2	Spe	cial Problems.	3
	2.1	DiAn26 statement: Non-dimensional form	3
	2.2	Statement: TFPa20. Semi-linear 1^{st} order eqn. & characteristics	4

1 Regular Problems.

1.1 Statement: Haberman problem 69.01.

Show that for an observer moving with the traffic, the rate of change of the measured density is

$$\frac{d\rho}{dt} = (u - c(\rho))\rho_x, \qquad (1.1)$$

where $c = \frac{dq}{d\rho}$.

1.2 Statement: TFPa11. Longest queue through a light.

A traffic signal (at x = 0) is green for $0 \le t \le T$, and red for all other times. If $\rho(x, 0) = \rho_j$ for $x \le 0$, $\rho(x, 0) = 0$ for x > 0, and $q = (4 q_m / \rho_j^2) \rho(\rho_j - \rho)$, determine the trajectory of the last car to make the light. What is the longest traffic queue that can pass through the intersection during the green light?

1.3 DiAn21 statement: Non-dimensional form.

Consider the problem (5th order Linear KDV equation Initial Value Problem)

$$\frac{\partial \tilde{u}}{\partial \tilde{t}} + \alpha \frac{\partial \tilde{u}}{\partial \tilde{x}} + \beta \frac{\partial^5 \tilde{u}}{\partial \tilde{x}^5} = 0, \quad -\infty < x < \infty \text{ and } t > 0, \quad \tilde{u}(\tilde{x}, 0) = \frac{u_m d^2}{(d^2 + \tilde{x}^2)}, \tag{1.2}$$

where (a) $\alpha > 0$, $\beta > 0$, $u_m > 0$, and d > 0 are dimensional constants; (b) \tilde{u} is density of some quantity (wiggies per unit length); and (c) tildes (i.e.: \tilde{u}, \tilde{x} , and \tilde{t}) denote dimensional variables.

- 1. What are the dimensions of the constants α , β , u_m , and d?
- 2. Introduce a-dimensional variables 1 u, x, and t, so that the equation takes the form $u_{t} + u_{x} + \gamma u_{xxxxx} = 0$, (1.3) where γ is a constant without dimensions, and the initial condition involves no free constants.²

1.4 Statement: TFPb09. Quasi-linear equation solution.

Find the solution to

$$x^2 \psi_x - \psi^2 \psi_y = 0, \qquad (1.4)$$

with $\psi = x$ on y = x, for x > 0. Where is the solution defined, and why?

1.5 Statement: TFPa21. Characteristics for 3D scalar quasi-linear equation.

Consider a p.d.e. of the form

$$P(x, y, z, \psi) \psi_x + Q(x, y, z, \psi) \psi_y + R(x, y, z, \psi) \psi_z = W(x, y, z, \psi), \qquad (1.5)$$

¹ That is, $x = \tilde{x}/L$, $t = \tilde{t}/T$, and $u = \tilde{u}/U$, for appropriate choices of a length L, a time T, and a density U. ² That is, no letter constants in it.

for the real valued function $\psi = \psi(x, y, z)$, for some given coefficient functions P, Q, R, and W. Assume that the values of ψ are given on some surface Γ . Specifically, let the surface be described (parametrically) by

$$x = X(u, v), \quad y = Y(u, v), \quad \text{and} \quad z = Z(u, v),$$
 (1.6)

by some functions X, Y, and Z, defined in some region Γ_p of the u-v plane. Then

$$\psi = \Psi(u, v), \tag{1.7}$$

for some function Ψ .

- (a) Give a detailed description of how you would solve the problem for ψ above, using the method of characteristics.
- (b) Use your method to find the solution to

$$A\psi_x + B\psi_y + \psi_z = -\psi, \tag{1.8}$$

where A and B are constants, and $\psi = \Psi(x, y)$ for z = 0.

1.6 Statement: TFPa18. Envelopes for families of curves.

Find the envelope of each of the following family of curves:

a.
$$y = c x - (1 + c^2) x^2$$
.
b. $x^2 + a^2 y^2 = a$.
c. $(1 - c) x + c y = c - c^2$.

2 Special Problems.

2.1 DiAn26 statement: Non-dimensional form.

Consider the problem (Burgers' equation Boundary Value Problem)

$$\frac{\partial \tilde{u}}{\partial \tilde{t}} + \alpha \, \tilde{u} \, \frac{\partial \tilde{u}}{\partial \tilde{x}} - \beta \, \frac{\partial^2 \tilde{u}}{\partial \tilde{x}^2} = 0, \quad 0 < x < d \text{ and } t > 0, \quad \tilde{u}(0, \tilde{t}) = \tilde{u}(d, \tilde{t}) = 0, \tag{2.9}$$

with some initial data. Here (a) $\alpha > 0$, $\beta > 0$, and d > 0 are dimensional constants; (b) \tilde{u} is density of some quantity (wiggies per unit length); and (c) tildes (i.e.: \tilde{u} , \tilde{x} , and \tilde{t}) denote dimensional variables.

- 1. What are the dimensions of the constants α , β , and d?
- 2. Introduce a-dimensional variables 3 u, x, and t, so that the equation takes the form $u_{t} + u u_{x} - u_{xx} = 0$, (2.10) where 0 < x < 1.

³ That is, $x = \tilde{x}/L$, $t = \tilde{t}/T$, and $u = \tilde{u}/U$, for appropriate choices of a length L, a time T, and a density U.

2.2 Statement: TFPa20. Semi-linear 1st order eqn. & characteristics.

Consider the equation

$$x^2 \psi_x - x \, y \, \psi_y = \psi^2 \,, \tag{2.11}$$

subject to $\psi = 1$ on the curve Γ given by $x = y^2$. This is a semi-linear problem (the terms involving derivatives of the solution are linear), that can be written in terms of characteristics.

- **A.** Compute the characteristic curves that cross the curve Γ , as follows: (i) Parameterize the curve Γ , say: $\boldsymbol{x} = \boldsymbol{\xi}^2$ and $\boldsymbol{y} = \boldsymbol{\xi}$, for $-\infty < \boldsymbol{\xi} < \infty$. (ii) Write the ode for the characteristic curves, in terms of some parameter (say, s) along each curve. (iii) Solve the ode for the characteristics, with the condition that $\boldsymbol{x} = \boldsymbol{\xi}^2$ and $\boldsymbol{y} = \boldsymbol{\xi}$, for $\boldsymbol{s} = \boldsymbol{0}$.
- **B.** Draw the characteristics, in the x-y plane, that you just computed. Which region of the plane do the curves cover? What happens with the characteristic corresponding to $\xi = 0$?
- **C.** Solve the ode that ψ satisfies along each characteristic. Eliminate the parameters ξ and s in terms of x and y, and write an explicit formula for the solution $\psi = \psi(x, y)$ to (2.11).
- **D.** Where is the solution ψ defined? **Hint.** Be careful with your answer here! What happens with ψ along each characteristic, far enough from Γ ? What happens with the $\xi = 0$ characteristic?

THE END.

18.311 Principles of Applied Mathematics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.