18.311 — MIT (Spring 2014)

Rodolfo R. Rosales

March 3, 2014.

Problem Set # 03. Due: Fri. March 14.

IMPORTANT:

— Turn in the regular and the special problems **stapled in two SEPARATE** packages.

— **Print your name** in each page of your answers.

— In page one of each package **print the names** of the other members of your group.

Update: fixed a problem with problem 1.4 below.

Contents

1	Regular Problems.		2
	1.1	Statement: Haberman problem 61.03	2
		Formula for car's acceleration	2
	1.2	Statement: Haberman problem 63.06	2
		Formula for car acceleration.	2
	1.3	Statement: Haberman problem 67.01	2
		The simplest velocity-density relationship.	2
	1.4	Statement: Haberman problem 71.02	2
		Density wave velocity relative to a moving car	2
	1.5	Problem 6302a. State laws and road capacity.	3
	1.6	Statement: Linear 1st order PDE # 05	3
2	\mathbf{Spe}	cial Problems.	3
	2.1	Statement: TFPa14. Solve using dimensionless variables	3
		Write traffic flow problem in a-dimensional variables, and solve	3
	2.2	Statement: TFPa19. Linear first order equation and characteristics	4

1 Regular Problems.

1.1 Statement: Haberman problem 61.03.

Assume that a velocity field, u = u(x, t) exists. Show that the acceleration of an individual car is given by

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x}.\tag{1.1}$$

1.2 Statement: Haberman problem 63.06.

Assume that $u = u(\rho)$. If α denotes the car's acceleration, show that

$$\alpha = -\rho \frac{du}{d\rho} \frac{\partial u}{\partial x}.$$
(1.2)

Is the minus sign here reasonable?

1.3 Statement: Haberman problem 67.01.

Suppose that

$$u = u_{\max} \left(1 - \frac{\rho}{\rho_{\max}} \right). \tag{1.3}$$

(a) What is the density wave velocity if the traffic density is nearly ρ_0 everywhere.

(b) Show that this density wave velocity is less than the car's velocity.

1.4 Statement: Haberman problem 71.02.

Consider the flow-density relationship used by H. Greenberg¹ to match Lincoln Tunnel data

$$q = a \rho \, \ln\left(\frac{\rho \max}{\rho}\right),$$

where a > 0 is a constant. Show that the density wave velocity relative to a moving car is the same constant no matter what the density.

¹Greenberg H., An Analysis of Traffic Flow, Operations Research, 7:79–85, (1959).

1.5 Problem 6302a. State laws and road capacity.

If cars obey (exactly) the typical state law² on following distances: (1) What is the road capacity? (2) At what density and velocity does this maximum occur? (3) Will increasing the speed limit increase the road's capacity? (4) Draw a plot of the flux q versus the density ρ . (5) Draw a plot of the flux q versus the velocity u.

The relationship of the car velocity u to the car density ρ prescribed by the state laws has the form

$$u = \min\left\{u_M, V\left(\frac{1}{\rho L} - 1\right)\right\}.$$
(1.4)

Here L is the car length, V is the "trigger" velocity in the law,³ and u_M is the speed limit. Assume that L = 16 ft = (1/330) mile, V = 10 m.p.h., and $u_M = 50$ m.p.h. (80 k.p.h.).

1.6 Statement: Linear 1st order PDE # 05.

Consider the problem

$$x u_x + (x+y) u_y = 1$$
, with $u(1, y) = y$ for $0 < y < 1$. (1.5)

Question 1. Write the solution u = u(x, y) in the region where it is uniquely determined.

Question 2. Describe the region in the plane where the solution to (1.5) is uniquely determined.

Question 3. Write all the functions u = u(x, y) that satisfy (1.5) on x > 0 and $-\infty < y < \infty$.

Question 4. Write all the functions u = u(x, y) that satisfy the pde in (1.5) for x < 0.

Question 5 (challenge/optional). What happens along x = 0? Can you produce solutions to the pde that are continuous in the "punctured" plane (plane minus the origin)?

2 Special Problems.

2.1 Statement: TFPa14. Solve using dimensionless variables.

Consider the traffic flow equation

$$\rho_t + q_x = 0, \tag{2.6}$$

with the quadratic flow $q = \frac{4 q_m}{\rho_j^2} \rho (\rho_j - \rho)$, where q_m = road capacity and ρ_j = jamming density.

Assume that either

² See equation (1.4).

 $^{^3}$ As in: Keep the distance to the next car at one car length L per every V in speed.

(a)
$$\rho(x, 0) = \begin{cases} \rho_0 & \text{for } x \le 0\\ \frac{\rho_0}{1 + (x/d)^2} & \text{for } x \ge 0 \end{cases}$$
 or (b) $\rho(x, 0) = \begin{cases} \rho_0 & \text{for } x \le 0\\ \frac{\rho_0}{1 + (x/d)} & \text{for } x \ge 0 \end{cases}$

where $0 < \rho_0 < \rho_j$ and d > 0 are constants. Then

- 1. Write everything using dimensionless variables.
- 2. Write the solution to (a) and (b) above using characteristics.
- 3. Show that there are no characteristic crossings. Thus (2) gives the complete solution.
- 4. In the case of (b), solve for $\xi = \xi(x, t)$, and write the solution explicitly.

Note: in (4) ξ denotes the label for the characteristics, defined as follows: $x = \xi$ at t = 0.

2.2 Statement: TFPa19. Linear first order equation and characteristics.

Find the solution to

 $x \psi_x - y \psi_y + \psi = 2x$, with $\psi = 0$ on the curve Γ given by y = 1. (2.7)

Draw the characteristics which touch Γ . Where is the solution defined?

THE END.

18.311 Principles of Applied Mathematics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.