18.311 — MIT (Spring 2014)

Rodolfo R. Rosales

February 24, 2014.

Problem Set # 02. Due: Tue. March 4.

IMPORTANT:

— Turn in the regular and the special problems **stapled in two SEPARATE** packages.

— Print your name in each page of your answers.

— In page one of each package **print the names** of the other members of your group.

Contents

1	Reg	gular Problems.	1
	1.1	Statement: Haberman problem 57.06	1
		Find car positions, velocities, etc., given initial positions and accelerations	1
	1.2	Statement: Haberman problem 60.01	2
		Cars in a semi-infinite highway	2
	1.3	Statement: Haberman problem 60.03	2
		Consequences of conservation.	2
	1.4	Statement: Haberman problem 60.04	2
		Density-flux opposite variation.	2
	1.5	Statement: Haberman problem 67.04	3
		Moving frame	3
	1.6	Statement: Linear 1st order PDE # 08	3
2	Spe	cial Problems.	3
	2.1	Statement: Linear 1st order PDE # 02	3
	2.2	Statement: Linear 1st order PDE # 09 (surface evolution)	4

1 Regular Problems.

1.1 Statement: Haberman problem 57.06.

Consider an infinite number of cars, each designated by a number β . Assume that the car labeled by β starts from $x = \beta$ ($\beta > 0$) with zero velocity, and also assume it has a constant acceleration β . (a) Determine the position and velocity of each car as a function of time.

- (b) Sketch the path of a typical car.
- (c) Determine the velocity field u = u(x, t).
- (d) Sketch the curves along which u = u(x, t) is constant.

1.2 Statement: Haberman problem 60.01.

Consider a semi-infinite highway $0 \le x < \infty$ (with no entrances of exits other than at x = 0). Show that the number of cars on the highway at time t is:

$$N_0 + \int_0^t q(0, \tau) \, d\tau, \tag{1.1}$$

where N_0 is the number of cars in the highway at time t = 0. You may assume that $\rho(x, t) \to 0$ as $x \to \infty$. Justify the equation **both**: directly (by physical reasoning), as well as by using the equation $\rho_t + q_x = 0$.

1.3 Statement: Haberman problem 60.03.

- (a) Without any mathematics, explain why $\int_{a(t)}^{b(t)} \rho(x, t) dx$ is constant if a and b (not equal to each other) are moving with the traffic.
- (b) Using part (a), re-derive the equation

$$\frac{d}{dt} \int_{a}^{b} \rho(x, t) \, dx = q(a, t) - q(b, t), \tag{1.2}$$

where a < b are any two points in the road.

(c) Assuming $\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial x}(\rho u)$, verify mathematically that part (a) is valid.

1.4 Statement: Haberman problem 60.04.

If the traffic flow is increasing as x increases $(\frac{\partial q}{\partial x} > 0)$, explain physically¹ why the density must be decreasing in time $(\frac{\partial \rho}{\partial t} < 0)$.

¹You do not need any equations.

1.5 Statement: Haberman problem 67.04.

Consider the equation

$$(\rho_1)_t + c\,(\rho_1)_x = 0. \tag{1.3}$$

Suppose that we observe ρ_1 in a coordinate system moving at velocity v. Show that

$$(\rho_1)_t + (c - v) (\rho_1)_x = 0. \tag{1.4}$$

Does the car density ρ stay constant moving at the car velocity?

1.6 Statement: Linear 1st order PDE # 08.

Solve the problem below, using the method of characteristics: (a) Compute the characteristics, as done in the lectures, starting from each point in the data set. (b) Next solve for the solution u along each characteristic. (c) Finally, eliminate the characteristic variables ζ and s from the expression² for u obtained in step (b) — using the result in step (a) — to obtain the solution as a function of x and y.

$$(x - y) u_x + (x + y) u_y = x^2 + y^2, (1.5)$$

with data $u(x, 0) = (1/2) x^2$ for $1 \le x < \exp(2\pi)$.

Further question: Where in the (x, y) plane does the problem above define the solution u? That is: what is the region of the plane characterized by the property that: through each point in this region there is exactly one characteristic connecting it with the curve where the data is given?

2 Special Problems.

2.1 Statement: Linear 1st order PDE # 02.

Consider the following problem

$$x u_x + y u_y = 1 + y^2$$
, with $u(x, 1) = 1 + x$ for $-\infty < x < \infty$. (2.6)

Part 1. Use the method of characteristics to solve this problem. Write the solution u = u(x, y)(explicitly!) as a function of x and y on y > 0. Hint. Write the characteristic equations: $\frac{dx}{ds} = \dots$, $\frac{dy}{ds} = \dots$, and $\frac{du}{ds} = \dots$. Then solve these equations using the initial data (for s = 0) $x = \tau$, y = 1, and $u = 1 + \tau$, for $-\infty < \tau < \infty$. Finally, eliminate s and τ , to get u as a function of x and y. **Part 2.** Explain why u = u(x, y) is not determined by the problem above for $y \leq 0$ (you may use

Part 2. Explain why u = u(x, y) is not determined by the problem above for $y \leq 0$ (you may use a diagram). Hint. Draw, in the x-y plane, the characteristic curves computed in part 1.

²Here ζ is the label for each characteristic, and s is a parameter along the characteristics.

2.2 Statement: Linear 1st order PDE # 09 (surface evolution).

The evolution of a material surface can (sometimes) be modeled by a pde. In evaporation dynamics, where the material evaporates into the surrounding environment, consider a surface described in terms of its "height" h = h(x, y, t) relative to the (x, y)-plane of reference. Under appropriate conditions, a rather complicated pde can be written³ for h. Here we consider a (drastically) simplified version of the problem, where the governing equation is

$$h_t = \frac{A}{r}h_r$$
, for $r = \sqrt{x^2 + y^2} > 0$ and $t > 0$, where $A > 0$ is a constant. (2.7)

Axial symmetry is assumed, so that h = h(r, t). Obviously, h should be an even function of r. This is both evident from the symmetry, and necessary in the equation to avoid singular behavior at the origin. Assume now $h(r, 0) = H(r^2)$, (2.8)

where H is a smooth function describing a localized bump. Specifically: (i) H(0) > 0, (ii) H is monotone decreasing. (iii) $H \to 0$ as $r \to \infty$. Note that h(r, 0) is an even function of r.

- **1.** Using the theory of characteristics, write an explicit formula for the solution of (2.7 2.8).
- **2.** Do a sketch of the characteristics in space time i.e.: r > 0 and t > 0.
- **3.** What happens with the characteristic starting at $r = \zeta > 0$ and t = 0 when $t = \zeta^2/2 A$?
- **4.** Show that the resulting solution is an even function of r for all times.
- **5.** Show that, as $t \to \infty$, the bump shrinks and vanishes. *Hint: pick some example function* H with the properties above, and plot the solution for various times. This will help you figure out why the bump shrinks and vanishes.

THE END.

³From mass conservation, with the details of the physics going into modeling the flux and sink/source terms.

18.311 Principles of Applied Mathematics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.