18.311 - MIT (Spring 2014)

Rodolfo R. Rosales

February 24, 2014.

Problem Set \# 02. Due: Tue. March 4.

IMPORTANT:

- Turn in the regular and the special problems stapled in two SEPARATE packages.
- Print your name in each page of your answers.
- In page one of each package print the names of the other members of your group.

Contents

1 Regular Problems. 1
1.1 Statement: Haberman problem 57.06 1
Find car positions, velocities, etc., given initial positions and accelerations. 1
1.2 Statement: Haberman problem 60.01 2
Cars in a semi-infinite highway. 2
1.3 Statement: Haberman problem 60.03 2
Consequences of conservation. 2
1.4 Statement: Haberman problem 60.04 2
Density-flux opposite variation. 2
1.5 Statement: Haberman problem 67.04 3
Moving frame. 3
1.6 Statement: Linear 1st order PDE \# 08. 3
2 Special Problems. 3
2.1 Statement: Linear 1st order PDE \# 02. 3
2.2 Statement: Linear 1st order PDE \# 09 (surface evolution). 4

1 Regular Problems.

1.1 Statement: Haberman problem 57.06.

Consider an infinite number of cars, each designated by a number β. Assume that the car labeled by β starts from $x=\beta(\beta>0)$ with zero velocity, and also assume it has a constant acceleration β.
(a) Determine the position and velocity of each car as a function of time.
(b) Sketch the path of a typical car.
(c) Determine the velocity field $u=u(x, t)$.
(d) Sketch the curves along which $u=u(x, t)$ is constant.

1.2 Statement: Haberman problem 60.01.

Consider a semi-infinite highway $0 \leq x<\infty$ (with no entrances of exits other than at $x=0$). Show that the number of cars on the highway at time t is:

$$
\begin{equation*}
N_{0}+\int_{0}^{t} q(0, \tau) d \tau \tag{1.1}
\end{equation*}
$$

where N_{0} is the number of cars in the highway at time $t=0$. You may assume that $\rho(x, t) \rightarrow 0$ as $x \rightarrow \infty$. Justify the equation both: directly (by physical reasoning), as well as by using the equation $\rho_{t}+q_{x}=0$.

1.3 Statement: Haberman problem 60.03.

(a) Without any mathematics, explain why $\int_{\boldsymbol{a}(\boldsymbol{t})}^{\boldsymbol{b}(\boldsymbol{t})} \boldsymbol{\rho}(\boldsymbol{x}, \boldsymbol{t}) \boldsymbol{d} \boldsymbol{x}$ is constant if a and b (not equal to each other) are moving with the traffic.
(b) Using part (a), re-derive the equation

$$
\begin{equation*}
\frac{d}{d t} \int_{a}^{b} \rho(x, t) d x=q(a, t)-q(b, t) \tag{1.2}
\end{equation*}
$$

where $a<b$ are any two points in the road.
(c) Assuming $\frac{\partial \rho}{\partial t}=-\frac{\partial}{\partial x}(\rho u)$, verify mathematically that part (a) is valid.

1.4 Statement: Haberman problem 60.04.

If the traffic flow is increasing as x increases $\left(\frac{\partial q}{\partial x}>0\right)$, explain physically ${ }^{1}$ why the density must be decreasing in time $\left(\frac{\partial \rho}{\partial t}<0\right)$.

[^0]
1.5 Statement: Haberman problem 67.04.

Consider the equation

$$
\begin{equation*}
\left(\rho_{1}\right)_{t}+c\left(\rho_{1}\right)_{x}=0 \tag{1.3}
\end{equation*}
$$

Suppose that we observe ρ_{1} in a coordinate system moving at velocity v. Show that

$$
\begin{equation*}
\left(\rho_{1}\right)_{t}+(c-v)\left(\rho_{1}\right)_{x}=0 \tag{1.4}
\end{equation*}
$$

Does the car density ρ stay constant moving at the car velocity?

1.6 Statement: Linear 1st order PDE \# 08.

Solve the problem below, using the method of characteristics: (a) Compute the characteristics, as done in the lectures, starting from each point in the data set. (b) Next solve for the solution u along each characteristic. (c) Finally, eliminate the characteristic variables ζ and s from the expression ${ }^{2}$ for u obtained in step (b) - using the result in step (a) - to obtain the solution as a function of x and y.

$$
\begin{equation*}
(x-y) u_{x}+(x+y) u_{y}=x^{2}+y^{2} \tag{1.5}
\end{equation*}
$$

with data $u(x, 0)=(1 / 2) x^{2}$ for $1 \leq x<\exp (2 \pi)$.
Further question: Where in the (x, y) plane does the problem above define the solution u ? That is: what is the region of the plane characterized by the property that: through each point in this region there is exactly one characteristic connecting it with the curve where the data is given?

2 Special Problems.

2.1 Statement: Linear 1st order PDE \# 02.

Consider the following problem

$$
\begin{equation*}
x u_{x}+y u_{y}=1+y^{2}, \quad \text { with } \quad u(x, 1)=1+x \text { for }-\infty<x<\infty . \tag{2.6}
\end{equation*}
$$

Part 1. Use the method of characteristics to solve this problem. Write the solution $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y})$ (explicitly!) as a function of \boldsymbol{x} and \boldsymbol{y} on $\boldsymbol{y}>\mathbf{0}$. Hint. Write the characteristic equations: $\frac{d x}{d s}=\ldots$, $\frac{d y}{d s}=\ldots$, and $\frac{d u}{d s}=\ldots$. Then solve these equations using the initial data (for $s=0$) $x=\tau, y=1$, and $u=1+\tau$, for $-\infty<\tau<\infty$. Finally, eliminate s and τ, to get u as a function of x and y.
Part 2. Explain why $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y})$ is not determined by the problem above for $\boldsymbol{y} \leq \mathbf{0}$ (you may use a diagram). Hint. Draw, in the $x-y$ plane, the characteristic curves computed in part 1.

[^1]
2.2 Statement: Linear 1st order PDE \# 09 (surface evolution).

The evolution of a material surface can (sometimes) be modeled by a pde. In evaporation dynamics, where the material evaporates into the surrounding environment, consider a surface described in terms of its "height" $h=h(x, y, t)$ relative to the (x, y)-plane of reference. Under appropriate conditions, a rather complicated pde can be written 3 for h. Here we consider a (drastically) simplified version of the problem, where the governing equation is

$$
\begin{equation*}
h_{t}=\frac{A}{r} h_{r}, \quad \text { for } r=\sqrt{x^{2}+y^{2}}>0 \text { and } t>0, \quad \text { where } A>0 \text { is a constant. } \tag{2.7}
\end{equation*}
$$

Axial symmetry is assumed, so that $h=h(r, t)$. Obviously, \boldsymbol{h} should be an even function of r. This is both evident from the symmetry, and necessary in the equation to avoid singular behavior at the origin. Assume now

$$
\begin{equation*}
h(r, 0)=H\left(r^{2}\right), \tag{2.8}
\end{equation*}
$$

where H is a smooth function describing a localized bump. Specifically: (i) $H(0)>0$, (ii) H is monotone decreasing. (iii) $H \rightarrow 0$ as $r \rightarrow \infty$. Note that $h(r, 0)$ is an even function of r.

1. Using the theory of characteristics, write an explicit formula for the solution of (2.7-2.8).
2. Do a sketch of the characteristics in space time - i.e.: $r>0$ and $t>0$.
3. What happens with the characteristic starting at $r=\zeta>0$ and $t=0$ when $t=\zeta^{2} / 2 A$?
4. Show that the resulting solution is an even function of r for all times.
5. Show that, as $t \rightarrow \infty$, the bump shrinks and vanishes. Hint: pick some example function H with the properties above, and plot the solution for various times. This will help you figure out why the bump shrinks and vanishes.

THE END.

[^2]MIT OpenCourseWare
http://ocw.mit.edu

18.311 Principles of Applied Mathematics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ You do not need any equations.

[^1]: ${ }^{2}$ Here ζ is the label for each characteristic, and s is a parameter along the characteristics.

[^2]: ${ }^{3}$ From mass conservation, with the details of the physics going into modeling the flux and sink/source terms.

