
18.310 lecture notes October 27, 2013

Network flows

Lecturer: Michel Goemans

1 The maximum flow problem

A network consists of a collection of vertices’ V , and a collection of arcs (or directed edges) A
between vertices: an arc from i to j is represented by the ordered pair (i, j) ∈ A. Each arc (i, j ∈ A
has a capacity denoted by u(i, j), representing the maximum rate at which we can send “things”
along this arc.

Here is an example network:

In this network we have two special vertices: a source vertex s and a sink vertex t. Our goal
is to send the maximum amount of flow from s to t; flow can only travel along arcs in the right
direction, and is constrained by the arc capacities. This “flow” could be many things: imagine
sending water along pipes, with the capacity representing the size of the pipe; or traffic, with the
capacity being the number of lanes of a road. Or a communications network, where the capacity
represents the bandwidth of a particular link in the network, and the flow consists of data packets
being sent. Network flows appear in many many settings.

The key property of a flow is flow conservation. Consider some vertex i, different from the
source or the sink. Then the amount of flow going into vertex i should be the same as the amount
of flow going out; no flow appears or disappears at this vertex.

In the above example, there is a flow of value 9 (you should be able to find such a flow pretty
easily). But there is no flow of any larger value. How can we see that this is the case? Well,
consider the set S shown. Since s ∈ S and t /∈ S, all flow from s to t needs to cross the boundary
of S. In the example, the total amount of outgoing capacity crossing this boundary is 9; and so
there cannot be a flow of larger value.

Let’s formalize this notion a bit.

flows-1

s

6

4

2

3

4

3

2

2

8

S

t

4

53

2



Definition 1. A s-t-cut is a subset S ⊂ V such that s ∈ S, t /∈ S. The capacity of an s-t-cut S is

cap(S) =
∑

u(i, j).

(i,j)∈A:i∈S,j∈/S

Note that we only count outgoing arcs towards the capacity of a cut; flow must traverse arcs in
the forward direction, so incoming arcs are not useful in “escaping” the cut.

The total amount of flow from s to t can’t exceed the capacity of any s-t-cut. This is rather
intuitive, but will be derived formally in the next section.

We use some shorthand and use “min cut” to refer to the minimum capacity of any s-t-cut. So
we have

max flow ≤ min cut.

But more is true!

Theorem 1. max flow = min cut.

We will show two ways to prove this theorem. One is to express the problem of finding a
maximum flow as a linear program, and use strong LP duality. The other one is to look at properties
of maximum flows and show that we can derive from any maximum flow a corresponding minimum
(s− t) cut giving the same value.

2 Expressing as a linear program

Our decision variables will be

xij = amount of flow on arc (i, j) ∈ A

z = total amount of flow sent from s to t.

The trickiest constraint to deal with is flow conservation. Consider any vertex i different from s
and t; since flow out is equal to flow in, we have

j:(

∑
xij =

i,j)∈A j:(

∑
xji;

j,i)∈A

note the order of the indices, it matters! What about if i = s? Then the amount of flow going out
should be larger than the amount coming in, by an amount z. (You might expect that there should
be no flow at all coming in, and you would be right; but we don’t need to exclude the possibility
at the moment, and it makes the equations easier in fact.) So we have

∑
xsj = x

j:(s,j)∈A j:(

∑
js + z.

j,s)∈A

Similarly, ∑
xtj =

j:(t,j)∈A j:(

∑
xjt − z;

j,t)∈A

flows-2



note the change in sign. We can put all three of these equations together as one, using some
notation: ∑

xij = x s

j

∑
ji + (1i= − 1i=t)z.

j:(i,j)∈A :(j,i)∈A

Here, 1E is just the indicator of the statement E; it is 1 if E is true, and 0 otherwise.
The other important constraint we must remember is simply that the flow on an arc must not

exceed the capacity. Putting this together, we have the following formulation of the maximum flow
problem:

max z

subject to
∑

xij −
∑

xji − (1i=s − 1i=t)z = 0 ∀i ∈ V (1)

j:(i,j)∈A j:(j,i)∈A
xij ≤ u(i, j) ∀(i, j) ∈ A

z, x ≥ 0.

This already tells us that we can solve the maximum flow problem using the simplex method. There
are, however, faster algorithms for solving this problem, and this is described in the next section.

We can formalize the claim that the value of any flow is at most the capacity of any cut.

Lemma 1. Given a flow x of value z and an s− t-cut S, we have z ≤ cap(S).

Proof. Given x and S, we obtain by summing (1) over i ∈ S:

z =
∑

xij − xji. (2)

(i,j)∈A:i∈S,j∈/S (j,i)∈A

∑
:j /∈S,i∈S

Using the fact that xij ≤ u(i, j) for the arcs in the first summation, and xji ≥ 0 for the arcs in the
second summation, we obtain:

z ≤
(i,j)

∑
u(i, j),

∈A:i∈S,j∈/S

showing the claim as the last term is precisely cap(S).

3 Augmenting path algorithm

A natural algorithm for the maximum flow problem is to start with the zero flow (no flow on any
arc) and to repeatedly push more flow from the source to the sink until we are unable to push more
flow. The notion of pushing flow needs, of course, to be formalized.

Suppose we have a flow x. If there exists an arc (s, v1) with xsv1 < u(s, v1) then we can increase
the flow along this arc say by ε > 0 where ε ≤ u(s, v1)−xsv1 , thereby increasing the net flow leaving
s by ε. However, flow conservation at v1 is not satisfied any more and to repair it, we could increase
the flow by ε on some arc (v1, v2) ∈ A with xv1v2 < u(v1, v2) provided ε is small enough. Another
option to reestablish flow conservation at v1 would be to decrease the flow on an arc (v2, v1) ∈ A
with xv2v1 > 0 by ε. We have now flow conservation back at v1, but we have again destroyed flow
conservation at v2. We can thus proceed similarly and find either an arc (v2, v3) ∈ A on which we
can increase flow by ε or an arc (v3, v2) ∈ P on which we can decrease flow by ε. This operation of

flows-3



pushing flow would be successful if we can eventually reach vertex t, as we do not need to maintain
flow conservation at the sink.

To formalize this operation of flow augmentation, it is convenient to define an auxiliary directed
graph Gx, called the residual network, and which depends on the current flow x. The graph Gx

has the same vertex set as G, and its edge set is

Ax = {(i, j) : (i, j) ∈ A, xij < uij} ∪ {(i, j) : (j, i) ∈ A, xji > 0}.

The edges in the first set in this definition are sometimes called the forward arcs and those in the
second set the backard arcs. This means that for any (i, j) ∈ Ax, we can either increase the flow on
(i, j) or decrease the flow on (j, i). In both cases, the net flow out of i increases while the net flow
out of j correspondingly decreases. For each arc (i, j) in Ax, we define a residual capacity ux(i, j)
by {

u(i, j)− xij (i, j) ∈ A : xij < u(i, j)
ux(i, j) = xji (j, i) ∈ A : xji > 0.

An augmenting path P with respect to a flow x is defined as a directed path from s to t in the residual
graph Gx. Given an augmenting path P we can modify the flow along P , by increasing the flow
by ε(P ) on forward edges and decreasing it by ε(P ) on backward where ε(P ) = min(i,j)∈P ux(i, j).
This choice of ε corresponds to the largest value such that the resulting flow satisfies the capacity
and nonnegativity constraints.

The augmenting path algorithm for the maximum flow problem is very simple to state. Start
with the zero flow x = 0. While there exists an augmenting path P in the residual graph Gx

corresponding to the current flow x, push flow along x. In the case that several augmenting paths
exist, we have not specified which one to select. However, independently of which augmenting
path is selected, we claim that this algorithm terminates and outputs a maximum flow, and this
is stated in the following theorem. We should emphasize, however, that this assumes that the
capacities are all integers (or rational numbers). In the case of potentially irrational capacities, an
unfortunate choice of augmenting path may lead to the algorithm never terminating, and the flow
value converging in the limit to a non-optimal value. When a flow has integer values for every arc,
we say that the flow is integral.

Theorem 2. Given a maximum flow problem with integer capacities, the augmenting path algorithm
terminates with a flow x∗ that is both maximal and integral. Furthermore, there exists a cut S
separating s and t whose capacity equals the value of the maximum flow x∗.

Proof. When the capacities are all integral, we first claim that the flow x will always be integral
during the execution of the algorithm. This is shown by induction. Indeed, the algorithm starts
with an integral flow (xa = 0 for every a ∈ A), and so the base case is satisfied. Now, assuming that
the current flow x is integral, we observe that all residual capacities are integral, and therefore ε(P )
is also an integer. Therefore, the flow obtained after pushing ε(P ) units along P remains integral.

This implies that the algorithm terminates. Indeed, at every iteration ε(P ) is a non-zero integer,
and therefore is at least 1. This means that the net flow out of s increases by at least one unit at
every iteration, and since the flow value of any flow is bounded by the capacity of any cut, say the
cut induced by {s}, the number of iterations before termination is finite. Let x∗ be the integral
flow that the algorithm returns.

flows-4



To show that this flow is a maximum flow, we exhibit a cut separating s from t whose capacity
equals the flow value. For this purpose, consider the residual graph Gx∗ corresponding to this final
flow x∗. Define S by

S := {v ∈ V : there exists a directed path from s to v in Gx∗}.
Obviously s ∈ S and, since there are no augmenting paths in Gx∗ (because of termination of the
algorithm), t is not reachable from s and thus t /∈ S. Thus S induces a cut separating s from t. By
definition of S, there are no arcs between S and V \ S in the residual graph GA∗ . This means that
x∗ij = u(i, j) for (i, j) ∈ A, i ∈ S, j /∈ S, and x∗ji = 0 for (j, i) ∈ A, j /∈ S, i ∈ S. This observation
together with (2) imply that

z∗ =
∑

x ∗ij − xji
∗ = uij = cap(S).

(i,j)∈A:i∈S,j∈/S (j,i)∈A

∑
:j /∈S,i∈S (i,j)∈A

∑
:i∈S,j∈/S

This means that both x∗ is a maximum flow and S gives a mimum s− t cut.

4 Dual

In this section, we provide an alternate proof of the maximum flow minimum cut theorem given in
Theorem 1 using linear programming duality.

The first step step is to write the dual. One way to do this is to write the LP in matrix form,
replacing equality constraints by pairs of inequalities (since the constraint aTx = b is the same as
the pair of constraints aTx ≤ b, aTx ≥ b). This is certainly doable, but a little painful. If you work
with linear programs enough, you get quite good at taking the dual; there are some discussion
about shortcuts in your linear programming notes. If you consult those, you should be able to
determine that the following is indeed the dual:

min
∑

u(i, j)αij

(i,j)∈A
subject to βt − βs ≥ 1

αij + βi − βj ≥ 0 ∀(i, j) ∈ A

αij ≥ 0 ∀(i, j) ∈ A

βi ∈ R ∀i ∈ V.

So far, we see no sign of cuts; somehow we need to massage our dual if we’re going to get our
max-flow min-cut theorem.

First, notice that for a fixed (i, j) ∈ A, the only constraints on αij are that αij ≥ βj − βi, and
αij ≥ 0. Moreover αij appears with a nonnegative coefficient in the minimization objective. So the
only reason that we would pick αij > βj − βi in an optimal solution is if βj − βi. More precisely,
we may take

αij = max(βj − βi, 0).

Let’s use the convenient notation (Z)+ := max(Z, 0). So we can rewrite the dual as

min
∑

u(i, j)(βj − β +
i)

(i,j)∈A
subject to βt − βs ≥ 1.

flows-5



Next, observe that just by shifting all the βi’s by the same amount, we can obtain an equivalent
solution with βs = 0, so let’s assume this from now on. So βt ≥ 1; but in fact we can assume that
βi ≤ 1 for all i ∈ V (meaning that βt = 1); for consider the replacement

βi
′ = min(βi, 1) ∀i ∈ V ;

then for any i, j such that βj > βi, we have βj
′ − βi

′ ≤ βj − βi. Thus the objective value of the
solution β′ is not larger than the objective value of the solution β.

So we can place all the βi’s on the interval [0, 1], with βs = 0 and βt = 1. Each βi is associated
with a vertex i ∈ V . So we can imagine drawing the graph, in such a way that vertex i is placed
at position βi:

βs βt
β2 β3 β4 β5

0 1

4

3

4
26

8

22

3

Now we can interpret the objective nicely in this picture. Any arc that is going from right to
left contributes nothing to the dual objective. An arc (i, j) going from left to right contributes an
amount equal to the product of its capacity u(i, j) and its length βj − βi. We can interpret this as:
arc (i, j) contributes u(i, j) over its length:

1

u(i, j)(βj − βi)
+ =

∫
u(i, j)1βi q<βj

dq.
0

≤

Thus

1

Dual objective = u(i, j)1βi
0

≤q<βj
dq

(i,j)∈

∑
A:βi≤βj

∫

=

∫ 1 ∑
u(i, j)1βi q<βj

dq
0

≤
(i,j)∈A:βi≤βj

=

∫ 1

0 (i,j)

∑
u(i, j)dq.

∈A:βi≤q,βj>q

Now define, for each q ∈ [0, 1), the s-t-cut

S(q) := {i ∈ V | βi ≤ q}.

(This is certainly an s-t-cut, since βs = 0 and βt = 1.) By the definition of the capacity of a cut,

flows-6



we have

1

Dual objective =

∫
cap(S(q))dq

0

≥ min cap(S(q))
q∈[0,1)

≥ min cut.

(The min cut is the minimum capacity of any s-t-cut; the S(q)’s are some special collection of
s-t-cuts, hence the last inequality.)

But we also know, by strong LP duality, that

dual optimum = primal optimum.

Since the primal optimum is just the max flow, we have that max flow ≥ min cut. But we already
know that max flow ≤ min cut; thus they must be equal. This proves Theorem 1.

flows-7



MIT OpenCourseWare
http://ocw.mit.edu

18.310 Principles of Discrete Applied Mathematics
Fall 2013
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

