
18.310 lecture notes September 2, 2013

Linear programming

Lecturer: Michel Goemans

1 Basics

Linear Programming deals with the problem of optimizing a linear objective function subject to
linear equality and inequality constraints on the decision variables. Linear programming has many
practical applications (in transportation, production planning, ...). It is also the building block for
combinatorial optimization. One aspect of linear programming which is often forgotten is the fact
that it is also a useful proof technique. In this first chapter, we describe some linear programming
formulations for some classical problems. We also show that linear programs can be expressed in a
variety of equivalent ways.

1.1 Formulations

1.1.1 The Diet Problem

In the diet model, a list of available foods is given together with the nutrient content and the cost
per unit weight of each food. A certain amount of each nutrient is required per day. For example,
here is the data corresponding to a civilization with just two types of grains (G1 and G2) and three
types of nutrients (starch, proteins, vitamins):

Starch Proteins Vitamins Cost ($/kg)

G1 5 4 2 0.6
G2 7 2 1 0.35

Nutrient content and cost per kg of food.

The requirement per day of starch, proteins and vitamins is 8, 15 and 3 respectively. The problem
is to find how much of each food to consume per day so as to get the required amount per day of
each nutrient at minimal cost.

When trying to formulate a problem as a linear program, the first step is to decide which
decision variables to use. These variables represent the unknowns in the problem. In the diet
problem, a very natural choice of decision variables is:

• x1: number of units of grain G1 to be consumed per day,

• x2: number of units of grain G2 to be consumed per day.

The next step is to write down the objective function. The objective function is the function to be
minimized or maximized. In this case, the objective is to minimize the total cost per day which is
given by z = 0.6x1 + 0.35x2 (the value of the objective function is often denoted by z).

Finally, we need to describe the different constraints that need to be satisfied by x1 and x2.
First of all, x1 and x2 must certainly satisfy x1 ≥ 0 and x2 ≥ 0. Only nonnegative amounts of
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food can be eaten! These constraints are referred to as nonnegativity constraints. Nonnegativity
constraints appear in most linear programs. Moreover, not all possible values for x1 and x2 give
rise to a diet with the required amounts of nutrients per day. The amount of starch in x1 units of
G1 and x2 units of G2 is 5x1 + 7x2 and this amount must be at least 8, the daily requirement of
starch. Therefore, x1 and x2 must satisfy 5x1+7x2 ≥ 8. Similarly, the requirements on the amount
of proteins and vitamins imply the constraints 4x1 + 2x2 ≥ 15 and 2x1 + x2 ≥ 3.

This diet problem can therefore be formulated by the following linear program:

Minimize z = 0.6x1 + 0.35x2

subject to:

5x1 + 7x2 ≥ 8

4x1 + 2x2 ≥ 15

2x1 + x2 ≥ 3

x1 ≥ 0, x2 ≥ 0.

Some more terminology. A solution x = (x1, x2) is said to be feasible with respect to the above
linear program if it satisfies all the above constraints. The set of feasible solutions is called the
feasible space or feasible region. A feasible solution is optimal if its objective function value is equal
to the smallest value z can take over the feasible region.

1.1.2 The Transportation Problem

Suppose a company manufacturing widgets has two factories located at cities F1 and F2 and three
retail centers located at C1, C2 and C3. The monthly demand at the retail centers are (in thousands
of widgets) 8, 5 and 2 respectively while the monthly supply at the factories are 6 and 9 respectively.
Notice that the total supply equals the total demand. We are also given the cost of transportation
of 1 widget between any factory and any retail center.

C1 C2 C3

F1 5 5
F2 6 4

3
1

Cost of transportation (in 0.01$/widget).

In the transportation problem, the goal is to determine the quantity to be transported from each
factory to each retail center so as to meet the demand at minimum total shipping cost.

In order to formulate this problem as a linear program, we first choose the decision variables.
Let xij (i = 1, 2 and j = 1, 2, 3) be the number of widgets (in thousands) transported from factory
Fi to city Cj. Given these xij ’s, we can express the total shipping cost, i.e. the objective function
to be minimized, by

5x11 + 5x12 + 3x13 + 6x21 + 4x22 + x23.

We now need to write down the constraints. First, we have the nonnegativity constraints saying
that xij ≥ 0 for i = 1, 2 and j = 1, 2, 3. Moreover, we have that the demand at each retail center
must be met. This gives rise to the following constraints:

x11 + x21 = 8,
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x12 + x22 = 5,

x13 + x23 = 2.

Finally, each factory cannot ship more than its supply, resulting in the following constraints:

x11 + x12 + x13 ≤ 6,

x21 + x22 + x23 ≤ 9.

These inequalities can be replaced by equalities since the total supply is equal to the total demand.
A linear programming formulation of this transportation problem is therefore given by:

Minimize 5x11 + 5x12 + 3x13 + 6x21 + 4x22 + x23

subject to:

x11 + x21 = 8

x12 + x22 = 5

x13 + x23 = 2

x11 + x12 + x13 = 6

x21 + x22 + x23 = 9

x11 ≥ 0, x21 ≥ 0, x31 ≥ 0,

x12 ≥ 0, x22 ≥ 0, x32 ≥ 0.

Among these 5 equality constraints, one is redundant, i.e. it is implied by the other constraints
or, equivalently, it can be removed without modifying the feasible space. For example, by adding
the first 3 equalities and substracting the fourth equality we obtain the last equality. Similarly, by
adding the last 2 equalities and substracting the first two equalities we obtain the third one.

1.2 Representations of Linear Programs

A linear program can take many different forms. First, we have a minimization or a maximization
problem depending on whether the objective function is to be minimized or maximized. The
constraints can either be inequalities (≤ or ≥) or equalities. Some variables might be unrestricted
in sign (i.e. they can take positive or negative values; this is denoted by ≷ 0) while others might
be restricted to be nonnegative. A general linear program in the decision variables x1, . . . , xn is
therefore of the following form:

Maximize or Minimize z = c0 + c1x1 + . . .+ cnxn

subject to:

≤
ai1x1 + ai2x2 + . . .+ ainxn ≥ bi i = 1, . . . ,m

=

0
xj

{ ≥
≷ j = 1, . . . , n.

0

The problem data in this linear program consists of cj (j = 0, . . . , n), bi (i = 1, . . . ,m) and aij
(i = 1, . . . ,m, j = 1, . . . , n). cj is referred to as the objective function coefficient of xj or, more
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simply, the cost coefficient of xj . bi is known as the right-hand-side (RHS) of equation i. Notice
that the constant term c0 can be omitted without affecting the set of optimal solutions.

A linear program is said to be in standard form if

• it is a maximization program,

• there are only equalities (no inequalities) and

• all variables are restricted to be nonnegative.

In matrix form, a linear program in standard form can be written as:

Max z = cTx

subject to:

Ax = b

x ≥ 0.

where

c =

⎛
c1
...

⎞ ⎛
b1
.

⎞ ⎛
x1
.

⎞
⎜

cn

⎟
, b =

⎜ .⎝ .
bm

⎟
, x =

⎜ .⎠ ⎝ ⎠ ⎝ .
xn

⎟⎠

are column vectors, cT denote the transpose of the vector c, and A = [aij ] is the m × n matrix
whose i, j−element is aij .

Any linear program can in fact be transformed into an equivalent linear program in standard
form. Indeed,

• If the objective function is to minimize z = c1x1 + . . . + cnxn then we can simply maximize
z′ = −z = −c1x1 − . . .− cnxn.

• If we have an inequality constraint ai1x1 + . . .+ ainxn ≤ bi then we can transform it into an
equality constraint by adding a slack variable, say s, restricted to be nonnegative: ai1x1 +
. . .+ ainxn + s = bi and s ≥ 0.

• Similarly, if we have an inequality constraint ai1x1+ . . .+ainxn ≥ bi then we can transform it
into an equality constraint by adding a surplus variable, say s, restricted to be nonnegative:
ai1x1 + . . .+ ainxn − s = bi and s ≥ 0.

• If xj is unrestricted in sign then we can introduce two new decision variables x+j and x−j
restricted to be nonnegative and replace every occurrence of xj by x+j − x−j .

For example, the linear program

Minimize z = 2x1 − x2

subject to:

x1 + x2 ≥ 2

3x1 + 2x2 ≤ 4

x1 + 2x2 = 3

x1 ≷ 0, x2 ≥ 0.

LP-4



is equivalent to the linear program

Maximize z′ = −2x+1 + 2x−1 + x2

subject to:

x+1 − x−1 + x2 − x3 = 2

3x+1 − 3x−1 + 2x2 + x4 = 4

x+1
+

− x−1 + 2x2 = 3

x1 ≥ 0, x−1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

with decision variables x+1 , x
−
1 , x2, x3, x4. Notice that we have introduced different slack or surplus

variables into different constraints.
In some cases, another form of linear program is used. A linear program is in canonical form if

it is of the form:

Max z = cTx

subject to:

Ax ≤ b

x ≥ 0.

A linear program in canonical form can be replaced by a linear program in standard form by just
replacing Ax ≤ b by Ax + Is = b, s ≥ 0 where s is a vector of slack variables and I is the m×m
identity matrix. Similarly, a linear program in standard form can be replaced by a linear program

A b
in canonical form by replacing Ax = b by A′x ≤ b′ where A′ =

[
−A

]
and b′ =

(
.−b

)

2 The Simplex Method

In 1947, George B. Dantzig developed a technique to solve linear programs — this technique is
referred to as the simplex method.

2.1 Brief Review of Some Linear Algebra

¯ ¯Two systems of equations Ax = b and Ax = b are said to be equivalent if {x : Ax = b} = {x :
¯ ¯Ax = b}. Let Ei denote equation i of the system Ax = b, i.e. ai1x1 + . . . + ainxn = bi. Given a
system Ax = b, an elementary row operation consists in replacing Ei either by αEi where α is a

¯ ¯nonzero scalar or by Ei + βEk for some k = i. Clearly, if Ax = b is obtained from Ax = b by an
elementary row operation then the two systems are equivalent. (Exercise: prove this.) Notice also
that an elementary row operation is reversible.

Let ars be a nonzero element of A. A pivot on ars consists of performing the following sequence
of elementary row operations:

• ¯replacing Er by Er =
1 Er,ars

• ¯ ¯for i = 1, . . . ,m, i = r, replacing Ei by Ei = Ei − aisEr = Ei − ais Er.ars
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After pivoting on ars, all coefficients in column s are equal to 0 except the one in row r which is
¯ ¯now equal to 1. Since a pivot consists of elementary row operations, the resulting system Ax = b

is equivalent to the original system.
Elementary row operations and pivots can also be defined in terms of matrices. Let P be an

m×m invertible (i.e. P−1 exists1) matrix. Then {x : Ax = b} = {x : PAx = Pb}. The two types
of elementary row operations correspond to the matrices (the coefficients not represented are equal
to 0):

⎛
1

. .

⎞ ⎛
1

.

⎞
⎜⎜ ⎟ ⎜⎜ . .. ⎜

1 β1

⎟
.

⎟⎟
P

⎜ ⎟
i

=

⎜
α

⎟⎟⎟ ⎜⎜⎜⎜⎜ ← i and P = .

⎟ ←
⎜⎜ 1⎜⎜ .

←
. .

⎜⎜ .

⎟

⎟⎟ ⎜ 1
⎟⎟⎟
⎟

.
k

1

⎟⎟ ⎜
. . .

⎟⎟⎝ ⎠ ⎜ ⎟⎝
1

⎠

Pivoting on ars corresponds to premultiplying Ax = b by

⎛
1 −a1s/ars⎜ . . .

⎞
⎜⎜⎜ 1 −ar 1,s/a− rs

⎟

P =
⎜⎜ 1/ars

⎟⎟

ar+1,s/ars 1

⎟⎟⎟← r.⎜
−⎜⎜⎜ . .⎝ .

⎟⎟

−ams/ars 1

⎟⎟⎠

2.2 The Simplex Method on an Example

For simplicity, we shall assume that we have a linear program of (what seems to be) a rather special
form (we shall see later on how to obtain such a form):

• the linear program is in standard form,

• b ≥ 0,

• there exists a collection B of m variables called a basis such that

– the submatrix AB of A consisting of the columns of A corresponding to the variables in
B is the m×m identity matrix and

– the cost coefficients corresponding to the variables in B are all equal to 0.

For example, the following linear program has this required form:

1This is equivalent to saying that detP = 0 or also that the system Px = 0 has x = 0 as unique solution
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Max z = 10 + 20 x1 + 16 x2 + 12 x3
subject to

x1 + x4 = 4
2 x1 + x2 + x3 +x5 = 10
2 x1 + 2x2 + x3 + x6 = 16
x1, x2, x3, x4, x5, x6 ≥ 0.

In this example, B = {x4, x5, x6}. The variables in B are called basic variables while the other
variables are called nonbasic. The set of nonbasic variables is denoted by N . In the example,
N = {x1, x2, x3}.

The advantage of having AB = I is that we can quickly infer the values of the basic variables
given the values of the nonbasic variables. For example, if we let x1 = 1, x2 = 2, x3 = 3, we obtain

x4 = 4− x1 = 3,

x5 = 10− 2x1 − x2 − x3 = 3,

x6 = 16− 2x1 − 2x2 − x3 = 7.

Also, we don’t need to know the values of the basic variables to evaluate the cost of the solution.
In this case, we have z = 10 + 20x1 + 16x2 + 12x3 = 98. Notice that there is no guarantee that
the so-constructed solution be feasible. For example, if we set x1 = 5, x2 = 2, x3 = 1, we have that
x4 = 4− x1 = −1 does not satisfy the nonnegativity constraint x4 ≥ 0.

There is an assignment of values to the nonbasic variables that needs special consideration. By
just letting all nonbasic variables to be equal to 0, we see that the values of the basic variables are
just given by the right-hand-sides of the constraints and the cost of the resulting solution is just
the constant term in the objective function. In our example, letting x1 = x2 = x3 = 0, we obtain
x4 = 4, x5 = 10, x6 = 16 and z = 10. Such a solution is called a basic feasible solution or bfs. The
feasibility of this solution comes from the fact that b ≥ 0. Later, we shall see that, when solving a
linear program, we can restrict our attention to basic feasible solutions. The simplex method is an
iterative method that generates a sequence of basic feasible solutions (corresponding to different
bases) and eventually stops when it has found an optimal basic feasible solution.

Instead of always writing explicitely these linear programs, we adopt what is known as the
tableau format. First, in order to have the objective function play a similar role as the other
constraints, we consider z to be a variable and the objective function as a constraint. Putting all
variables on the same side of the equality sign, we obtain:

−z + 20x1 + 16x2 + 12x3 = −10.

We also get rid of the variable names in the constraints to obtain the tableau format:
−z x1 x2 x3 x4 x5 x6
1 20 16 12 -10

1 0 0 1 4
2 1 1 1 10
2 2 1 1 16

Our bfs is currently x1 = 0, x2 = 0, x3 = 0, x4 = 4, x5 = 10, x6 = 16 and z = 10. Since the
cost coefficient c1 of x1 is positive (namely, it is equal to 20), we notice that we can increase z by
increasing x1 and keeping x2 and x3 at the value 0. But in order to maintain feasibility, we must
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have that x4 = 4−x1 ≥ 0, x5 = 10−2x1 ≥ 0, x6 = 16−2x1 ≥ 0. This implies that x1 ≤ 4. Letting
x1 = 4, x2 = 0, x3 = 0, we obtain x4 = 0, x5 = 2, x6 = 8 and z = 90. This solution is also a bfs and
corresponds to the basis B = {x1, x5, x6}. We say that x1 has entered the basis and, as a result, x4
has left the basis. We would like to emphasize that there is a unique basic solution associated with
any basis. This (not necessarily feasible) solution is obtained by setting the nonbasic variables to
zero and deducing the values of the basic variables from the m constraints.

Now we would like that our tableau reflects this change by showing the dependence of the new
basic variables as a function of the nonbasic variables. This can be accomplished by pivoting on the
element a11. Why a11? Well, we need to pivot on an element of column 1 because x1 is entering
the basis. Moreover, the choice of the row to pivot on is dictated by the variable which leaves the
basis. In this case, x4 is leaving the basis and the only 1 in column 4 is in row 1. After pivoting on
a11, we obtain the following tableau:
−z x1 x2 x3 x4 x5 x6
1 16 12 -20 -90

1 0 0 1 4
1 1 -2 1 2
2 1 -2 1 8

Notice that while pivoting we also modified the objective function row as if it was just like
another constraint. We have now a linear program which is equivalent to the original one from
which we can easily extract a (basic) feasible solution of value 90. Still z can be improved by
increasing xs for s = 2 or 3 since these variables have a positive cost coefficient2 c̄s. Let us choose
the one with the greatest c̄s; in our case x2 will enter the basis. The maximum value that x2 can
take while x3 and x4 remain at the value 0 is dictated by the constraints x1 = 4 ≥ 0, x5 = 2−x2 ≥ 0
and x6 = 8 − 2x2 ≥ 0. The tightest of these inequalities being x5 = 2 − x2 ≥ 0, we have that x5
will leave the basis. Therefore, pivoting on ā22, we obtain the tableau:
−z x1 2 3 4 5 6

1 -4 12 -16 -122

1 0 1 0 4
1 1 -2 1 2

-1 2 -2 1 4

x x x x x

The current basis is B = {x1, x2, x6} and its value is 122. Since 12 > 0, we can improve
the current basic feasible solution by having x4 enter the basis. Instead of writing explicitely the
constraints on x4 to compute the level at which x4 can enter the basis, we perform the min ratio
test. If xs is the variable that is entering the basis, we compute

¯min bi/āis .
i:āis>0

{ }

The argument of the minimum gives the variable that is exiting the basis. In our example, we
obtain 2 = min{4/1, 4/2} and therefore variable x6 which is the basic variable corresponding to
row 3 leaves the basis. Moreover, in order to get the updated tableau, we need to pivot on ā34.
Doing so, we obtain:

2 ¯ ¯By simplicity, we always denote the data corresponding to the current tableau by c,̄ A, and b.
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−z x1 x2 x3 x4 x5 x6
1 2 -4 -6 -146

1 1/2 1 -1/2 2
1 0 -1 1 6

-1/2 1 -1 1/2 2

Our current basic feasible solution is x1 = 2, x2 = 6, x3 = 0, x4 = 2, x5 = 0, x6 = 0 with value
z = 146. By the way, why is this solution feasible? In other words, how do we know that the
right-hand-sides (RHS) of the constraints are guaranteed to be nonnegative? Well, this follows
from the min ratio test and the pivot operation. Indeed, when pivoting on ārs, we know that

• ārs > 0,

• b̄r
ārs

≤ b̄i if āis > 0.āis

After pivoting the new RHS satisfy

• ¯ ¯
br =

br
ārs

≥ 0,

• ¯ ¯bi = b āis ¯
i − ārs

≥ bi ≥ 0 if āis ≤ 0 and

• ¯ ¯ ¯
bi = bi − āis = āisārs

(
b ¯
i br 0 if āis > 0.āis
− ārs

)
≥

We can also justify why the solution keeps improving. Indeed, when we pivot on ārs > 0, the
¯ ¯constant term c̄0 in the objective function becomes c̄0 + br ∗ c̄s/ārs. If br > 0, we have a strict

improvement in the objective function value since by our choice of entering variable c̄s > 0. We
¯shall deal with the case br = 0 later on.

The bfs corresponding to B = {1, 2, 4} is not optimal since there is still a positive cost coefficient.
We see that x3 can enter the basis and, since there is just one positive element in row 3, we have
that x1 leaves the basis. We thus pivot on ā13 and obtain:
−z x1 x2 x3 x4 x5 x6
1 -4 -8 -4 -154

2 1 2 -1 4
0 1 -1 1 6
1 1 0 0 4

The current basis is {x3, x2, x4} and the associated bfs is x1 = 0, x2 = 6, x3 = 4, x4 = 4, x5 =
0, x6 = 0 with value z = 154. This bfs is optimal since the objective function reads z = 154− 4x1−
8x5 − 4x6 and therefore cannot be more than 154 due to the nonnegativity constraints.

Through a sequence of pivots, the simplex method thus goes from one linear program to another
equivalent linear program which is trivial to solve. Remember the crucial observation that a pivot
operation does not alter the feasible region.

In the above example, we have not encountered several situations that may typically occur.
First, in the min ratio test, several terms might produce the minimum. In that case, we can
arbitrarily select one of them. For example, suppose the current tableau is:
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−z x1 x2 x3 x4 x5 x6
1 16 12 -20 -90

1 0 0 1 4
1 1 -2 1 2
2 1 -2 1 4

and that x2 is entering the basis. The min ratio test gives 2 = min{2/1, 4/2} and, thus, either
x5 or x6 can leave the basis. If we decide to have x5 leave the basis, we pivot on ā22; otherwise,
we pivot on ā32. Notice that, in any case, the pivot operation creates a zero coefficient among the
RHS. For example, pivoting on ā22, we obtain:
−z x1 x2 x3 x4 x5 x6
1 -4 12 -16 -122

1 0 1 0 4
1 1 -2 1 2

-1 2 -2 1 0

¯A bfs with bi = 0 for some i is called degenerate. A linear program is nondegenerate if no bfs is
degenerate. Pivoting now on ā34 we obtain:
−z x1 x2 x3 x4 x5 x6
1 2 -4 -6 -122

1 1/2 1 -1/2 4
1 0 -1 1 2

-1/2 1 -1 1/2 0

¯This pivot is degenerate. A pivot on ārs is called degenerate if br = 0. Notice that a degenerate
¯pivot alters neither the bi’s nor c̄0. In the example, the bfs is (4, 2, 0, 0, 0, 0) in both tableaus. We

thus observe that several bases can correspond to the same basic feasible solution.
Another situation that may occur is when xs is entering the basis, but āis ≤ 0 for i = 1, . . . ,m.

In this case, there is no term in the min ratio test. This means that, while keeping the other nonbasic
variables at their zero level, xs can take an arbitrarily large value without violating feasibility. Since
c̄s > 0, this implies that z can be made arbitrarily large. In this case, the linear program is said to
be unbounded or unbounded from above if we want to emphasize the fact that we are dealing with
a maximization problem. For example, consider the following tableau:
−z x1 x2 x3 x4 x5 x6
1 16 12 20 -90

1 0 0 -1 4
1 1 0 1 2
2 1 -2 1 8

If x4 enters the basis, we have that x1 = 4 + x4, x5 = 2 and x6 = 8 + 2x4 and, as a result, for
any nonnegative value of x4, the solution (4 + x4, 0, 0, x4, 2, 8 + 2x4) is feasible and its objective
function value is 90 + 20x4. There is thus no finite optimum.
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2.3 Detailed Description of Phase II

In this section, we summarize the different steps of the simplex method we have described in the
previous section. In fact, what we have described so far constitutes Phase II of the simplex method.
Phase I deals with the problem of putting the linear program in the required form. This will be
described in a later section.

Phase II of the simplex method

1. Suppose the initial or current tableau is
−z x1 . . . xs . . . xn
1 c̄1 . . . c̄s . . . c̄n −c̄0

ā11 . . . ā1s . . . ā1n b̄1 ≥ 0
. . . .. . . .. . . .

ār1 . . . ārs . . . ārn b̄r ≥ 0
. . . .. . . .. . . .

ām1 . . . āms . . . āmn b̄m ≥ 0

and the variables can be partitioned into B = {xj1 , . . . , xjm} and N with

• c̄ji = 0 for i = 1, . . . ,m and

•
0 k = i

ākji =

{
1 k = i.

¯The current basic feasible solution is given by xji = bi for i = 1, . . . ,m and xj = 0
otherwise. The objective function value of this solution is c̄0.

2. If c̄j ≤ 0 for all j = 1, . . . , n then the current basic feasible solution is optimal.
STOP.

3. Find a column s for which c̄s > 0. xs is the variable entering the basis.

4. Check for unboundedness. If āis ≤ 0 for i = 1, . . . ,m then the linear program is
unbounded. STOP.

5. Min ratio test. Find row r such that

¯ ¯br bi
= min .

ā i:ā >rs is 0 āis

6. Pivot on ārs. I.e. replace the current tableau by:
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−z . . . xs . . . xj . . .
¯ārj c̄s br c̄s

1 . . . 0 . . . c̄j − . . . −c̄0 −
ārs ārs

. . .. . .. . .
¯ārj br

row r . . . 1 . . . . . .
ārs ārs

. . .. . .. . .
¯ā arj¯is brāis¯row i . . . 0 . . . aij −¯ . . . bi −

ārs ārs
. . .. . .. . .

Replace xjr by xs in B.

7. Go to step 2.

2.4 Convergence of the Simplex Method

As we have seen, the simplex method is an iterative method that generates a sequence of basic
feasible solutions. But, do we have any guarantee that this process eventually terminates? The
answer is yes if the linear program is nondegenerate.

Theorem 2.1. The simplex method solves a nondegenerate linear program in finitely many itera-
tions.

b̄r c̄s
Proof. For nondegenerate linear programs, we have a strict improvement (namely of value > 0)

ārs
in the objective function value at each iteration. This means that, in the sequence of bfs produced
by the simplex method, each bfs can appear at most once. Therefore, for nondegenerate linear
programs, the number of iterations is certainly upper bounded by the number of bfs. This latter
number is finite (for example, it is upper bounded by

(
n
)
) since any bfs corresponds to m variablesm

being basic3.

However, when the linear program is degenerate, we might have degenerate pivots which give
no strict improvement in the objective function. As a result, a subsequence of bases might repeat
implying the nontermination of the method. This phenomenon is called cycling.

2.4.1 An Example of Cycling

The following is an example that will cycle if unfortunate choices of entering and leaving variables
are made (the pivot element is within a box).

3Not all choices of basic variables give rise to feasible solutions.

LP-12



−z x1 x2 x3 x4 x5 x6
1 4 1.92 -16 -0.96 0

-12.5 -2 12.5 1 1 0

1 0.24 -2 -0.24 1 0

−z x1 x2 x3 x4 x5 x6
1 0.96 -8 0 -4 0

1 -12.5 -2 1 12.5 0
1 0.24 -2 -0.24 1 0

−z x1 x2 x3 x4 x5 x6
1 4 1.92 -0.96 -16 0

1 -12.5 -2 1 12.5 0

1 1 0.24 -0.24 -2 0

−z x1 x2 x3 x4 x5 x6
1 -4 0.96 0 -8 0

12.5 1 1 -2 -12.5 0
1 1 0.24 -0.24 -2 0

−z x1 x2 x3 x4 x5 x6
1 -16 -0.96 1.92 4 0

12.5 1 1 -2 -12.5 0

-2 -0.24 1 0.24 1 0

−z x1 x2 x3 x4 x5 x6
1 -8 0 -4 0.96 0

-12.5 -2 12.5 1 1 0
-2 -0.24 1 0.24 1 0

−z x1 x2 x3 x4 x5 x6
1 4 1.92 -16 -0.96 0

-12.5 -2 12.5 1 1 0

1 0.24 -2 -0.24 1 0

2.4.2 Bland’s Anticycling Rule

The simplex method, as described in the previous section, is ambiguous. First, if we have several
variables with a positive c̄s (cfr. Step 3) we have not specified which will enter the basis. Moreover,
there might be several variables attaining the minimum in the minimum ratio test (Step 5). If
so, we need to specify which of these variables will leave the basis. A pivoting rule consists of
an entering variable rule and a leaving variable rule that unambiguously decide what will be the
entering and leaving variables.

The most classical entering variable rule is:
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Largest coefficient entering variable rule: Select the variable xs with the largest c̄s > 0. In
case of ties, select the one with the smallest subscript s.

The corresponding leaving variable rule is:

Largest coefficient leaving variable rule: Among all rows attaining the minimum in the min-
imum ratio test, select the one with the largest pivot ārs. In case of ties, select the one with
the smallest subscript r.

The example of subsection 2.4.1 shows that the use of the largest coefficient entering and leaving
variable rules does not prevent cycling. There are two rules that avoid cycling: the lexicographic
rule and Bland’s rule (after R. Bland who discovered it in 1976). We’ll just describe the latter one,
which is conceptually the simplest.

Bland’s anticycling pivoting rule: Among all variables xs with positive c̄s, select the one with
the smallest subscript s. Among the eligible (according to the minimum ratio test) leaving
variables xl, select the one with the smallest subscript l.

Theorem 2.2. The simplex method with Bland’s anticycling pivoting rule terminates after a finite
number of iterations.

Proof. The proof is by contradiction. If the method does not stop after a finite number of iterations
then there is a cycle of tableaus that repeats. If we delete from the tableau that initiates this cycle
the rows and columns not containing pivots during the cycle, the resulting tableau has a cycle with
the same pivots. For this tableau, all right-hand-sides are zero throughout the cycle since all pivots
are degenerate.

Let t be the largest subscript of the variables remaining. Consider the tableau T1 in the cycle
with xt leaving. Let B = {xj1 , . . . , xjm} be the corresponding basis (say jr = t), xs be the associated
entering variable and, a1ij and c1j the constraint and cost coefficients. On the other hand, consider

the tableau T2 with xt entering and denotes by a2ij and c2j the corresponding constraint and cost
coefficients.

Let x be the (infeasible) solution obtained by letting the nonbasic variables in T1 be zero except
for xs = −1. Since all RHS are zero, we deduce that xji = ais for i = 1, . . . ,m. Since T2 is obtained
from T1 by elementary row operations, x must have the same objective function value in T1 and
T2. This means that

m

c10 − c1s = c2 2
0 − cs +

∑
a1isc

2
ji .

i=1

Since we have no improvement in objective function in the cycle, we have c10 = c20. Moreover, c1s > 0
and, by Bland’s rule, c2s ≤ 0 since otherwise xt would not be the entering variable in T2. Hence,

m∑
a1isc

2
ji < 0

i=1

implying that there exists k with a1ksc
2
j < 0. Notice that k = r, i.e. jk < t, since the pivot element
k

in T1, a1rs, must be positive and c2t > 0. However, in T2, all cost coefficients c2j except c2t are

nonnegative; otherwise xj would have been selected as entering variable. Thus c2j < 0 and a1
k ks > 0.

This is a contradiction because Bland’s rule should have selected xjk rather than xt in T1 as leaving
variable.
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2.5 Phase I of the Simplex Method

In this section, we show how to transform a linear program into the form presented in Section
2.2. For that purpose, we show how to find a basis of the linear program which leads to a basic
feasible solution. Sometimes, of course, we may inherit a bfs as part of the problem formulation.
For example, we might have constraints of the form Ax ≤ b with b ≥ 0 in which case the slack
variables constitute a bfs. Otherwise, we use the two-phase simplex method to be described in this
section.

Consider a linear program in standard form with b ≥ 0 (this latter restriction is without loss of
generality since we may multiply some constraints by -1). In phase I, instead of solving

Max z = c T
0 + c x

subject to:

(P ) Ax = b

x ≥ 0

we add some artificial variables {xai : i = 1, . . . ,m} and consider the linear program:

m

Min w =
∑

xai
i=1

subject to:

Ax+ Ixa = b

x ≥ 0, xa ≥ 0.

This program is not in the form required by the simplex method but can easily be transformed
to it. Changing the minw by maxw′ = −w and expressing the objective function in terms of the
initial variables, we obtain:

Max w′ = −eT b+ (eTA)x

subject to:

(Q) Ax+ Ixa = b

x ≥ 0, xa ≥ 0

where e is a vector of 1’s. We have artificially created a bfs, namely x = 0 and xa = b. We now use
the simplex method as described in the previous section. There are three possible outcomes.

1. w′ is reduced to zero and no artificial variables remain in the basis, i.e. we are left with a basis
consisting only of original variables. In this case, we simply delete the columns corresponding
to the artificial variables, replace the objective function by the objective function of (P ) after
having expressed it in terms of the nonbasic variables and use Phase II of the simplex method
as described in Section 2.3.

2. w′ < 0 at optimality. This means that the original LP (P ) is infeasible. Indeed, if x is feasible
in (P ) then (x, xa = 0) is feasible in (Q) with value w′ = 0.
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3. w′ is reduced to zero but some artificial variables remain in the basis. These artificial variables
must be at zero level since, for this solution, −w′ m=

∑
i=1 x

a
i = 0. Suppose that the ith variable

ofthe basis is artificial. We may pivot on any nonzero (not necessarily positive) element āij
¯of row i corresponding to a non-artificial variable xj . Since bi = 0, no change in the solution

or in w′ will result. We say that we are driving the artificial variables out of the basis. By
repeating this for all artificial variables in the basis, we obtain a basis consisting only of
original variables. We have thus reduced this case to case 1.

There is still one detail that needs consideration. We might be unsuccessful in driving one
artificial variable out the basis if āij = 0 for j = 1, . . . , n. However, this means that we
have arrived at a zero row in the original matrix by performing elementary row operations,
implying that the constraint is redundant. We can delete this constraint and continue in
phase II with a basis of lower dimension.

Example

Consider the following example already expressed in tableau form.
−z x1 2 3 4

1 20 16 12 5 0

1 0 1 2 4
0 1 2 3 2
0 1 0 2 2

x x x

We observe that we don’t need to add three artificial variables since we can use x1 as first basic
variable. In phase I, we solve the linear program:
w x1 x2 x3 x4 x1 x2
1 2 2

1 0 1

1 2
1 0

5

2

3 1
2

4

4

2
1 2

a a

The objective function is to minimize xa a
1+x2 and, as a result, the objective function coefficients

of the nonbasic variables as well as −c̄0 are obtained by taking the negative of the sum of all rows
corresponding to artificial variables. Pivoting on ā22, we obtain:
w x1 x2 x3 x4 x1 x2
1

1

-2

1

-1 -2

2 0

0

4
1 2

-2

3 1

-1 -1

2

1 0

a a

This tableau is optimal and, since w = 0, the original linear program is feasible. To obtain a
bfs, we need to drive xa1 out of the basis. This can be done by pivoting on say ā34. Doing so, we
get:
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w x1 x2 x3 x4
ax1

ax2
1 0 -1 -1 0

1 -3 -2 2 4
1 -4 -2 3 2

2 1 1 -1 0

Expressing z as a function of {x1, x2, x4}, we have transformed our original LP into:
−z x1 2 3 4

1 126 -112

1 -3 4
1 -4 2

2 1 0

x x x

This can be solved by phase II of the simplex method.

3 Linear Programming in Matrix Form

In this chapter, we show that the entries of the current tableau are uniquely determined by the
collection of decision variables that form the basis and we give matrix expressions for these entries.

Consider a feasible linear program in standard form:

Max z = cTx

subject to:

Ax = b

x ≥ 0,

where A has full row rank. Consider now any intermediate tableau of phase II of the simplex
method and let B denote the corresponding collection of basic variables. If D (resp. d) is an m×n
matrix (resp. an n-vector), let DB (resp. dB) denote the restriction of D (resp. d) to the columns
(resp. rows) corresponding to B. We define analogously DN and dN for the collection N of nonbasic
variables. For example, Ax = b can be rewritten as ABxB +ANxN = b. After possible regrouping
of the basic variables, the current tableau looks as follows:

−z
xB
0

xN
T̄cN −c̄0

ĀB = I ĀN b̄.

Since the current tableau has been obtained from the original tableau by a sequence of elemen-
tary row operations, we conclude that there exists an invertible matrix P (see Section 2.1) such
that:

¯PAB = AB = I

¯PAN = AN

and
¯Pb = b.
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This implies that P = A−1
B and therefore:

ĀN = A−1
B AN

and
b̄ = A−1

B b.

Moreover, since the objective functions of the original and current tableaus are equivalent (i.e.
cT T T T T ¯ ¯
BxB + cNxN = c̄0 + c̄BxB + c̄NxN = c̄0 + c̄NxN ) and xB = b−ANxN , we derive that:

c̄TN = cTN − cT ¯
BAN = cTN − cTBA

−1
B AN

and
c̄0 = cT ¯Bb = cTBA

−1
B b.

This can also be written as:
c̄T = cT − cTBA

−
B
1A.

As we’ll see in the next chapter, it is convenient to define an m-vector y by yT = cTBA
−
B
1. In

summary, the current tableau can be expressed in terms of the original data as:

−z
xB
0 TcN

xN
− yTAN −yT b

I A−1
B AN A−1

B b.

The simplex method could be described using this matrix form. For example, this optimality
criterion becomes cT − yTA ≤ 0 or, equivalently, cT T

N − y A ≤ 0, i.e. AT
N y ≥ c where yT = cTBA

−1
B .

4 Duality

Duality is the most important and useful structural property of linear programs. We start by
illustrating the notion on an example.

Consider the linear program:

Max z = 5x1 + 4x2

subject to:

x1 ≤ 4

x1 + 2x2 ≤ 10 (2)

3x1 + 2x2 ≤ 16 (3)

x1, x2 ≥ 0.

We shall refer to this linear program as the primal. By exhibiting any feasible esolution, say x1 = 4
and x2 = 2, one derives a lower bound (since we are maximizing) on the optimum value z∗ of the
linear program; in this case, we have z∗ ≥ 28. How could we derive upper bounds on z∗? Multiplying
inequality (3) by 2, we derive that 6x1 + 4x2 ≤ 32 for any feasible (x1, x2). Since x1 ≥ 0, this in
turn implies that z = 5x1 + 4x2 ≤ 6x1 + 4x2 ≤ 32 for any feasible solution and, thus, z∗ ≤ 32.
One can even combine several inequalities to get upper bounds. Adding up all three inequalities,
we get 5x1 + 4x2 ≤ 30, implying that z∗ ≤ 30. In general, one would multiply inequality (1)
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by some nonnegative scalar y1, inequality (2) by some nonnegative y2 and inequality (3) by some
nonnegative y3, and add them together, deriving that

(y1 + y2 + 3y3)x1 + (2y2 + 2y3)x2 ≤ 4y1 + 10y2 + 16y3.

To derive an upper bound on z∗, one would then impose that the coefficients of the xi’s in this
implied inequality dominate the corresponding cost coefficients: y1+y2+3y3 ≥ 5 and 2y2+2y3 ≥ 4.
To derive the best upper bound (i.e. smallest) this way, one is thus led to solve the following so-called
dual linear program:

Min w = 4y1 + 10y2 + 16y3

subject to:

y1 + y2 + 3y3 ≥ 5

2y2 + 2y3 ≥ 4

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

Observe how the dual linear program is constructed from the primal: one is a maximization problem,
the other a minimization; the cost coefficients of one are the RHS of the other and vice versa; the
constraint matrix is just transposed (see below for more precise and formal rules). The optimum
solution to this linear program is y1 = 0, y2 = 0.5 and y3 = 1.5, giving an upper bound of 29 on
z∗. What we shall show in this chapter is that this upper bound is in fact equal to the optimum
value of the primal. Here, x1 = 3 and x2 = 3.5 is a feasible solution to the primal of value 29 as
well. Because of our upper bound of 29, this solution must be optimal, and thus duality is a way
to prove optimality.

4.1 Duality for Linear Programs in canonical form

Given a linear program (P ) in canonical form

Max z = cTx

subject to:

(P ) Ax ≤ b

x ≥ 0

we define its dual linear program (D) as

Min w = bT y

subject to:

(D) AT y ≥ c

y ≥ 0.

(P ) is called the primal linear program. Notice there is a dual variable associated with each primal
constraint, and a dual constraint associated with each primal variable. In fact, the primal and dual
are indistinguishable in the following sense:

Proposition 4.1. The dual of the dual is the primal.
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Proof. To construct the dual of the dual, we first need to put (D) in canonical form:

Max w′ = −w = −bT y

subject to:

(D′) −AT y ≤ −c

y ≥ 0.

Therefore the dual (DD′) of D is:

Min z′ = −cTx

subject to:

(DD′) −Ax ≥ −b

x ≥ 0.

Transforming this linear program into canonical form, we obtain (P ).

Theorem 4.2 (Weak Duality). If x is feasible in (P ) with value z and y is feasible in (D) with
value w then z ≤ w.

Proof.
x

z = cT
≥0 y 0

x ≤ (AT
≥

y)Tx = yTAx ≤ yT b = bT y = w.

Any dual feasible solution (i.e. feasible in (D)) gives an upper bound on the optimal value
z∗ of the primal (P ) and vice versa (i.e. any primal feasible solution gives a lower bound on the
optimal value w∗ of the dual (D)). In order to take care of infeasible linear programs, we adopt the
convention that the maximum value of any function over an empty set is defined to be −∞ while
the minimum value of any function over an empty set is +∞. Therefore, we have the following
corollary:

Corollary 4.3 (Weak Duality). z∗ ≤ w∗.

What is more surprising is the fact that this inequality is in most cases an equality.

Theorem 4.4 (Strong Duality). If z∗ is finite then so is w∗ and z∗ = w∗.

Proof. The proof uses the simplex method. In order to solve (P ) with the simplex method, we
reformulate it in standard form:

Max z = cTx

subject to:

(P ) Ax+ Is = b

x ≥ 0, s ≥ 0.

˜Let A = (A I), x̃ =

(
x

)
and c̃ =

(
c
)
. Let B be the optimal basis obtained by the simplex

s 0
method. The optimality conditions imply that

ÃT y ≥ c̃
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where
yT = (c̃B)

T Ã−1
B .

c˜Replacing A by (A I) and c̃ by

( )
, we obtain:

0

AT y ≥ c

and
y ≥ 0.

This implies that y is a dual feasible solution. Moreover, the value of y is precisely w = yT b =
(c̃ )T Ã−1 T

B B b = (c̃B) x̃B = z∗. Therefore, by weak duality, we have z∗ = w∗.

Since the dual of the dual is the primal, we have that if either the primal or the dual is feasible
and bounded then so are both of them and their values are equal. From weak duality, we know
that if (P ) is unbounded (i.e. z∗ = +∞) then (D) is infeasible (w∗ = +∞). Similarly, if (D) is
unbounded (i.e. w∗ = −∞) then (P ) is infeasible (z∗ = −∞). However, the converse to these
statements are not true: There exist dual pairs of linear programs for which both the primal and
the dual are infeasible. Here is a summary of the possible alternatives:

Dual
Primal

z∗ finite unbounded (z∗ = ∞) infeasible (z∗ = −∞)

∗w finite z∗ ∗= w impossible impossible
∗unbounded (w = −∞) impossible impossible possible

∗infeasible (w = + ) impossible possible possible∞

4.2 The dual of a linear program in general form

In order to find the dual of any linear program (P ), we can first transform it into a linear program
in canonical form (see Section 1.2), then write its dual and possibly simplify it by transforming it
into some equivalent form.

For example, considering the linear program

Max z = cTx

subject to: ∑
aijxj

j

≤ bi i ∈ I1

(P )
∑

aijxj ≥ bi i I
j

∈ 2

∑
aijxj = bi i

j

∈ I3

xj ≥ 0 j = 1, . . . , n,
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we can first transform it into

Max z = cTx

subject to: ∑
aijxj b

j

≤ i i ∈ I1

(P ′) −
∑

aijxj
j

≤ −bi i ∈ I2

∑
aijxj ≤ bi i

j

∈ I3

−
∑

aijxj
j

≤ −bi i ∈ I3

xj ≥ 0 j = 1, . . . , n.

Assigning the vectors y1, y2, y3 and y4 of dual variables to the first, second, third and fourth set of
constraints respectively, we obtain the dual:

Min w =
∑

biy
1 2 3 4
i −

∈ i

∑
biyi + biyi − biyi

i I1 ∈I2 i

∑
∈I3 i

∑
∈I3

subject to:

(D′)
∑

a 3
ijy

1 2 4
i −

∑
aijyi +

∑
aijyi −

∑
aijyi ≥ cj j = 1, . . . , n

i∈I1 i∈I2 i∈I3 i∈I3
y1, y2, y3, y4 ≥ 0.

This dual can be written in a simplified form by letting

⎧
y I⎨ i = y1i i ∈ 1

yi = −y2i i ∈ I2⎩
yi = y3i − y4i i ∈ I3.

In terms of yi, we obtain (verify it!) the following equivalent dual linear program

Min w =
∑

biyi
i∈I

subject to:

(D)
∑

aijyi ≥ cj j = 1, . . . , n
i∈I
yi ≥ 0 i ∈ I1

yi ≤ 0 i ∈ I2

yi ≷ 0 i ∈ I3,

where I = I1 ∪ I2 ∪ I3.
We could have avoided all these steps by just noticing that, if the primal program is a max-

imization program, then inequalities with a ≤ sign in the primal correspond to nonnegative dual
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variables, inequalities with a ≥ sign correspond to nonpositive dual variables, and equalities corre-
spond to unrestricted in sign dual variables.

By performing similar transformations for the restrictions on the primal variables, we obtain
the following set of rules for constructing the dual linear program of any linear program:

Primal ←→ Dual
Max ←→ Min∑

j aijxj ≤ bi ←→ yi ≥ 0∑
j aijxj ≥ bi ←→ yi ≤ 0∑
j aijxj = bi ←→ yi ≷ 0

xj ≥ 0 ←→ i aijyi ≥ cj
xj ≤ 0 ←→

∑
i aijyi ≤ cj

xj ≷ 0 ←→
∑

i aijyi = cj .

If the primal linear program is in fact a minimization

∑
program then we simply use the above

rules from right to left. This follows from the fact that the dual of the dual is the primal.

4.3 Complementary slackness

Consider a pair of dual linear programs

Max z = cTx

subject to:

(P ) Ax ≤ b

x ≥ 0

and

Min w = bT y

subject to:

(D) AT y ≥ c

y ≥ 0.

Strong duality allows to give a simple test for optimality.

Theorem 4.5 (Complementary Slackness). If x is feasible in (P ) and y is feasible in (D) then x
is optimal in (P ) and y is optimal in (D) iff yT (b−Ax) = 0 and xT (AT y − c).

The latter statement can also be written as
either yi = 0 or (Ax)i = bi (or both) and
either x T

j = 0 or (A y)j = cj (or both).

Proof. By strong duality we know that x is optimal in (P ) and y is optimal in (D) iff cTx = bT y.
Moreover, (cfr. Theorem 4.2) we always have that:

cTx ≤ yTAx ≤ yT b = bT y.

Therefore, cTx = bT y is equivalent to cTx = yTAx and yTAx = yT b. Rearranging these expressions,
we obtain xT (AT y − c) = 0 and yT (b−Ax) = 0.
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Corollary 4.6. Let x be feasible in (P ). Then x is optimal iff there exists y such that

AT y

{ ≥ xj = 0
cj if

=

{
xj > 0

yi

{ ≥ =
f

=

{
(Ax)i bi0 i
(Ax)i < bi.

As a result, the optimality of a given primal feasible solution can be tested by checking the
feasibility of a system of linear inequalities and equalities.

As should be by now familiar, we can write similar conditions for linear programs in other forms.
For example,

Theorem 4.7. Let x be feasible in

Max z = cTx

subject to:

(P ) Ax = b

x ≥ 0

and y feasible in

Min w = bT y

subject to:

(D) AT y ≥ c.

Then x is optimal in (P ) and y is optimal in (D) iff xT (AT y − c) = 0.

4.4 The separating hyperplane theorem

In this section, we use duality to obtain a necessary and sufficient condition for feasibility of a
system of linear inequalities and equalities.

Theorem 4.8 (The Separating Hyperplane Theorem). Ax = b, x ≥ 0 has no solution iff ∃y ∈ R
m :

AT y ≥ 0 and bT y < 0.

The geometric interpretation behind the separating hyperplane theorem is as follows: Let
a1, . . . , an ∈ R

m nbe the columns of A. Then b does not belong to the cone K = {∑i=1 aixi : xi ≥ 0
for i = 1, . . . , n} generated by the ai’s iff there exists an hyperplane {x : xT y = 0} (defined by its
normal y) such that K is entirely on one side of the hyperplane (i.e. aTi y ≥ 0 for i = 1, . . . , n) while
b is on the other side (bT y < 0).

Proof. Consider the pair of dual linear programs

Max z = 0Tx

subject to:

(P ) Ax = b

x ≥ 0
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and

Min w = bT y

subject to:

(D) AT y ≥ 0.

Notice that (D) is certainly feasible since y = 0 is a feasible solution. As a result, duality implies
that (P ) is infeasible iff (D) is unbounded. However, since λy is dual feasible for any λ ≥ 0 and
any dual feasible solution y, the unboundedness of (D) is equivalent to the existence of y such that
AT y ≥ 0, y ≥ 0 and bT y < 0.

Other forms of the separating hyperplane theorem include:

Theorem 4.9. Ax ≤ b has no solution iff ∃y ≥ 0 : AT y = 0 and bT y < 0.

5 Zero-Sum Matrix Games

In a matrix game, there are two players, say player I and player II. Player I has m different pure
strategies to choose from while player II has n different pure strategies. If player I selects strategy
i and player II selects strategy j then this results in player I gaining aij units and player II losing
aij units. So, if aij is positive, player II pays aij units to player I while if aij is negative then player
I pays −aij units to player II. Since the amounts gained by one player equal the amounts paid by
the other, this game is called a zero-sum game. The matrix A = [aij ] is known to both players
and is called the payoff matrix. In a sequence of games, player I (resp. player II) may decide to
randomize his choice of pure strategies by selecting strategy i (resp. j) with some probability yi
(resp. xj). The vector y (resp. x) satisfies

m n∑
yi = 1 (resp.

∑
xj = 1),

i=1 j=1

yi ≥ 0 (resp. xj ≥ 0) and defines a mixed strategy.
If player I adopts the mixed strategy y then his expected gain gj if player II selects strategy j

is given by:

gj =
∑

aijyi = (yTA)j = yTAej .
i

By using y, player I assures himself a guaranteed gain of

g = min gj = min(yTA)j .
j j

Similarly, if player II adopts the mixed strategy x then his expected loss li if player I selects strategy
i is given by:

li =
∑

aijxj = (Ax)i = eTi Ax
j
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and his guaranteed loss4 is
l = max li = max(Ax)i.

i i

If player I uses the mixed strategy y and player II uses the mixed strategy x then the expected
gain of player I is h =

∑
i,j yiaijxj = yTAx.

Theorem 5.1. If y and x are mixed strategies respectively for players I and II then g ≤ l.

Proof. We have that

h = yTAx =
∑

yi(Ax)i
i

≤ l
∑

yi = l
i

and
h = yTAx =

∑
(yTA)jxj ≥ g

j

∑
xj = g

j

proving the result.

Player I will try to select y so as to maximize his guaranteed gain g while player II will select x
so as to minimize l. From the above result, we know that the optimal guaranteed gain g∗ of player
I is at most the optimal guaranteed loss l∗ of player II.

The main result in zero-sum matrix games is the following result obtained by Von Neumann
and called the minimax theorem.

Theorem 5.2 (The Minimax Theorem). There exist mixed strategies x∗ and y∗ such that g∗ = l∗.

Proof. In order to prove this result, we formulate the objectives of both players as linear programs.
Player II’s objective is to minimize l. This can be expressed by:

Min l

subject to:

(P ) Ax ≤ le

eTx = 1

x ≥ 0, l ≷ 0

where e is a vector of all 1’s. Indeed, for any optimal solution x∗, l∗ to (P ), we know that l∗ =
maxi(Ax

∗)i since otherwise l∗ could be decreased without violating feasibility.
Similarly, player I’s objective can be expressed by:

Max g

subject to:

(D) AT y ≥ ge

eT y = 1

y ≥ 0, g ≷ 0

Again, any optimal solution to the above program will satisfy g∗ = minj(A
T y∗)j .

The result follows by noticing that (P ) and (D) constitute a pair of dual linear programs (verify
it!) and, therefore, by strong duality we know that g∗ = l∗.

4Here guaranteed means that he’ll loose at most l.
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The above Theorem can be rewritten as follows (This explains why it is called the minimax
theorem):

Corollary 5.3.
max min yTAx = min max yTAx.

eT y=1,y≥0 eT x=1,x≥0 eT x=1,x≥0 eT y=1,y≥0

Indeed
min yTAx = min(yTA)j = g

eT x=1,x≥0 j

and
max yTAx = max(Ax)i = l.

eT y=1,y≥0 i

Example

Consider the game with payoff matrix

A =

(
1 −3
−2 4

)
.

Solving the linear program (P ), we obtain the following optimal mixed strategies for both players
(do it by yourself!):

x∗ =
(

7/10
)

6/10
and y∗ =

3/10

(
4/10

)
,

for which g∗ = l∗ = −2/10.
A matrix game is said to be symmetric ifA = −AT . Any symmetric game is fair, i.e. g∗ = l∗ = 0.
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