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18.310 lecture notes June 3, 2014 

Chernoff bounds, and some applications 
Lecturer: Michel Goemans, Lorenzo Orecchia 

Preliminaries 

Before we venture into Chernoff bound, let us recall two simple bounds on the probability that a random 
variable deviates from the mean by a certain amount: Markov’s inequality and Chebyshev’s inequality. 

Markov’s inequality only applies to non-negative random variables and gives us a bound depending on 
the expectation of the random variable. 

Theorem 1 (Markov’s Inequality). Let X : S → R be a non-negative random variable. Then, for any a > 0, 

E(X)
P(X ≥ a) ≤ . 

a 

Proof. Let A denote the event {X ≥ a}. Then:    
E(X) = P(ω)X(ω) = P(ω)X(ω) + P(ω)X(ω). 

ω∈S ω∈A ω∈Ā 
As X is non-negative, we have P(ω)X(ω) ≥ 0. Hence:ω∈Ā   

E(X) ≥ P(ω)X(ω) ≥ a P(ω) = a · P(A). 
ω∈A ω∈A 

Chebyshev’s inequality requires the variance of the random variable and is normally stronger. 

P(|X − E(X)| ≥ a) ≤ 

Theorem 2 (Chebyshev’s Inequality). Let X : S → R be a random variable with expectation E(X) and 
variance Var(X). Then, for any a ∈ R: 

Var(X) 
. 

a2 

Proof. Apply Markov’s Inequality to the non-negative random variable (X − E(X))2 . Notice that   
E (X − E(X))2 = Var(X). 

Even though Markov’s and Chebyshev’s Inequality only use information about the expectation and the 
variance of the random variable under consideration, they are essentially tight for a general random variable. 

Exercise Verify this by constructing non-trivial (i.e. non-constant) random variables for which Theo
rem 1 and Theorem 2 are tight, i.e. hold with equality. 
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2 Deviation of a sum on independent random variables 

As we are not able to improve Markov’s Inequality and Chebyshev’s Inequality in general, it is worth to 
consider whether we can say something stronger for a more restricted, yet interesting, class of random 
variables. This idea brings us to consider the case of a random variable that is the sum of a number of 
independent random variables. 

This scenario is particularly important and ubiquitous in statistical applications. Examples of such 
random variables are the number of heads in a sequence of coin tosses, or the average support obtained by 
a political candidate in a poll. 

Can Markov’s and Chebyshev’s Inequality be improved for this particular kind of random variable? 
Before confronting this question, let us check what Chebyshev’s Inequality (the stronger of the two) gives us 
for a sum of independent random variables. 

Theorem 3. Let X1, X2, . . . , Xn be independent random variables with E(Xi) = µi and Var(Xi) = σi 
2 . 

Then, for any a > 0: 
n n n 

σ2 
i=1 iP(| Xi − µi| ≥ a) ≤ 
a2 

i=1 i=1 

n n
Proof. This follows from Chebyshev’s Inequality applied to Xi and the fact that Var( Xi) = i=1 i=1 

n 
Var(Xi) for independent variables. i=1 

In particular, for identically distributed random variables with expectation µ and variance σ2, we obtain 

P 
n 
i=1 Xi − µ 

σ2 

n 
≥ b ≤ 

nb2 

for any b > 0. We covered this derivation in the lecture on the Weak Law of Large Numbers. 
Can this result be improved or is it tight? At a first glance, you may suspect that this is tight, as we 

have made use of all our assumptions. In particular, we exploited the independence of the variables {Xi}
n n

to get Var( Xi) = Var(Xi). Notice, however, that this last step actually only uses the pairwise i=1 i=1 
independence of the variables {Xi}, i.e. the fact that, for all couples i = j ∈ [n] and all x, y ∈ R: 

P(Xi = x ∧ Xj = y) = P(Xi = x) · P(Xj = y). (1) 

Indeed, it is possible to show that Theorem 3 is tight when all the variables {Xi} are just guaranteed to be 
pairwise independent.  Hard Exercise Let X1, . . . , Xd be independent random variables that take value 1 or −1, each with 
probability 1/2. For each S ⊆ [d], define the random variable YS 

are pairwise independent. ii) Let Z = S⊆D 

= Xi. i) Show that the variables {YS }i∈S 
YS . Show that Chebyshev’s Inequality is asymptotically tight 

for Z. 
We are now ready to tackle the case of a sum of independent random variables. Recall that we are now 

using the following strong version of independence (also known as joint or mutual independence), which 
guarantees the same property of Equation 1 for any subset S ⊆ [n] of random variables: 

∀S ⊆ [n], P( Xi = xi) = P(Xi = xi). 
i∈S i∈S 

In this case, the proof of Theorem 3 is too weak as it does not rely on the joint independence. In the next 
section, we will see that we can indeed obtain stronger bounds under this stronger assumpiton. These bounds 
are known as Chernoff bounds, after Herman Chernoff, Emeritus Professor of Applied Mathematics here at 
MIT! 
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3 Chernoff Bound 

There are many different forms of Chernoff bounds, each tuned to slightly different assumptions. We will 
start with the statement of the bound for the simple case of a sum of independent Bernoulli trials, i.e. the 
case in which each random variable only takes the values 0 or 1. For example, this corresponds to the case 
of tossing unfair coins, each with its own probability of heads, and counting the total number of heads. 

n
Theorem 4 (Chernoff Bounds). Let X = Xi, where Xi = 1 with probability pi and Xi = 0 withi=1 

n
probability 1 − pi, and all Xi are independent. Let µ = E(X) = i=1 pi. Then 

δ2 

2+δ(i) Upper Tail: P(X ≥ (1 + δ)µ) ≤ e − µ for all δ > 0; 

−µδ2/2(ii) Lower Tail: P(X ≤ (1 − δ)µ) ≤ e for all 0 < δ < 1; 

Notice that the lower and upper tail take slightly different forms. Curiously, this is necessary and boils 
down to the use of different approximation of the logarithmic function. There exist more general versions of 
this bound, where this asymmetry is not present, but they are more complicated, as the involve the entropy 
of the distribution at the exponent. 

3.1 Proof idea and moment generating function 

Let X be any random variable, and a ∈ R. We will make use of the same idea which we used to prove 
Chebyshev’s inequality from Markov’s inequality. For any s > 0, 

sX ≥ e sa)P(X ≥ a) = P(e 
sX )E(e≤ by Markov’s inequality. (2) 

esa 

(Recall that to obtain Chebyshev, we squared both sides in the first step, here we exponentiate.) So we have 
some upper bound on P(X > a) in terms of E(esX ). Similarly, for any s > 0, we have 

−sX ≥ e −sa)P(X ≤ a) = P(e 
−sX )E(e≤ −sae

The key player in this reasoning is the moment generating function MX of the random variable X, which 
is a function from R to R defined by   

sXMX (s) = E e . 

The reason for the name is related to the Taylor expansion of esX ; assuming it converges, we have 

∞  
1 12X2 3X3MX (s) = E 1 + sX + s + s + · · · =

1 
s iE(Xi).2 3! i! 

i=0 

The terms E(Xi) are called “moments” and encode important information about the distribution; notice that 
the first moment (i = 1) is just the expectation, and the second moment is closely related to the variance. 
So the moment generating function encodes information of all of these moments in some way. 

Moment generating functions behave wonderfully with respect to addition of independent random vari
ables: 

n
Lemma 1. If X = Xi where X1, X2, . . . , Xn are independent random variables, then i=1 

n 

MX (s) = MXi (s). 
i=1 
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Proof. 

 
s i=1 XiMX (s) = E(e sX ) = E e 

n 

n 
sXi= E e 

i=1 
n 

sXi )= E(e by independence 
i=1 
n 

= MXi (s). 
i=1 

This lemma allows us to prove a Chernoff bound by bounding the moment generating function of each 
Xi individually. 

3.2 Proof of Theorem 4 

Before proceeding to prove the theorem, we compute the form of the moment generating function for a single 
Bernoulli trial. Our goal is to then combine this expression with Lemma 1 in the proof of Theorem 4. 

Lemma 2. Let Y be a random variable that takes value 1 with probability p and value 0 with probability 
1 − p. Then, for all s ∈ R: 

sY ) ≤ ep(e s−1)MY (s) = E(e . 

Proof. We have: 

sY )MY (s) = E(e 

= p · e s + (1 − p) · 1 by definition of expectation 

= 1 + p(e s − 1) 
p(e s−1) y≤ e using 1 + y ≤ e with y = p(e s − 1). 

We are now ready to prove Theorem 4 by combining Lemma 1 and 2. 

Proof of Theorem 4. Applying Lemma 1 and Lemma 2, we obtain 

n  
pi(e s−1) (e s −1) pi (e s −1)µi=1MX (s) ≤ e = e

n 

≤ e , (3) 
i=1 

n
using that = E(X) = µ.i=1 pi 

For the proof of the upper tail, we can now apply the strategy described in Equation 2, with a = (1+ δ)µ 
and s = ln(1 + δ). 

−s(1+δ)µ (e s−1)µ)P(X ≥ (1 + δ)µ) ≤ e e
µδe

= . 
(1 + δ)1+δ 
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Our choice of s is motivated as follows: we are trying to make our upper bound for the tail probability to 
be as small as possible. To do this, we can minimize our expression for the upper bound as a function of s. 
Taking the derivative of the exponent shows that this minimum is achieved exactly at s = log(1 + δ). 

Taking the natural logarithm of the right-hand side yields 

µ(δ − (1 + δ) ln(1 + δ)). 

Using the following inequality for x > 0(left as an exercise): 

x 
ln(1 + x) ≥ ,

1 + x/2 

we obtain 
δ2 

µ(δ − (1 + δ) ln(1 + δ)) ≤ − µ.
2 + δ 

Hence, we have the desired bound for the upper tail: 

µδ 
δ2e
2+δP(X ≥ (1 + δ)µ) ≤ ≤ e − µ . 

(1 + δ)1+δ 

The proof of the lower tail is entirely analogous. It proceeds by taking s = ln(1 − δ) and applies the 
following inequality for the logarithm of (1 − δ) in the range 0 < δ < 1 : 

δ2 

ln(1 − δ) ≥ −δ + . 
2 

Details are left as an exercise. 

Other versions of Chernoff Bound 

For δ ∈ (0, 1), we can combine the lower and upper tails in Theorem 4 to obtain the following simple and 
useful bound: 

Corollary 5. With X and X1, . . . , Xn as before, and µ = E(X), 

−µδ2/3P(|X − µ| ≥ δµ) ≤ 2e for all 0 < δ < 1. 

Chernoff bound can be applied to more general settings than that of Bernoulli variables. In particular, 
the following version of the bound applies to bounded random variables, regardless of their distribution! 

n
Theorem 6. Let X1, X2, . . . , Xn be random variables such that a ≤ Xi ≤ b for all i. Let X = i=1 Xi and 
set µ = E(X). Then, for all δ > 0 : 

22δ2 µ− 
n(b−a)2(i) Upper Tail: P(X ≥ (1 + δ)µ) ≤ e ; 

δ2 µ 2 
− 

n(b−a)2(ii) Lower Tail: P(X ≤ (1 − δ)µ) ≤ e . 

Example application: coin tossing 

Suppose we have a fair coin. Repeatedly toss the coin, and let Sn be the number of heads from the first n 
tosses. Then the weak law of large numbers tells us that P(|Sn/n − 1/2| ≥ E) → 0 as n → ∞. But what can 
we say about this probability for some fixed n? If we go back to the proof of the weak law that we gave in 
terms of Chebyshev’s inequality, we find that it tells us that 

1
P(|Sn/n − 1/2| ≥ E) ≤ . 

4nE2 
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So for example, P(|Sn/n − 1/2| ≥ 1/4) ≤ 4 . n 
But we can apply Chernoff instead of Chebyshev; what do we get then? From Corollary 5, using 

E(Sn) = n/2, 
−nδ2/6P(|Sn − n/2| ≥ δ(n/2)) ≤ 2e . 

−n/24Taking δ = 1/2 we obtain P(|Sn/n − 1/2| ≥ 1/4) ≤ 2e . This is a massive improvement over the 
Chebyshev bound! Let’s try this now with a much smaller δ: let δ = 6 ln n/n. Then we obtain  1− ln nP(|Sn/n − 1/2| ≥ 1 6 ln n/n) ≤ 2e = 2 .2 n  
If instead we take δ just twice as large, δ = 2 6 ln n/n,  1−4 ln nP(|Sn/n − 1/2| ≥ 6 ln n/n) ≤ 2e = 2 . 

n4 
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