18.307: Integral Equations
M.I.T. Department of Mathematics

Fall 2006
Homework 7
21. This problem provides a review of contour integration and Fourier transforms in the complex plane. Consider the analytic function $f(z)$ of the complex variable z which, in particular, is differentiable in the interval (a, b) of the real axis. Define the functions

$$
F(\zeta)=\int_{a}^{b} d x e^{-i \zeta x} f(x), \quad I(z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \zeta e^{i \zeta z} F(\zeta)
$$

By breaking the integration path for $I(z)$ into the two halves $(-\infty, 0)$ and $(0, \infty)$, inserting the definition of $F(\zeta)$, and replacing the path (a, b) by either an upper or lower half-plane integration path, as appropriate, show that $I(z)=f(z)$ for $a<z<b$. What do you obtain for $I(z)$ when z is outside (a, b) ?
22. (Prob. 7.21 in text by M. Masujima.) Solve the following Wiener-Hopf integral equation of the 1st kind by applying the Wiener-Hopf method:

$$
\int_{0}^{\infty} d y K_{0}(x-y) u(y)=2 \pi, \quad x \geq 0
$$

where $K_{0}(x)$ is the modified Hankel function given by the integral formula

$$
K_{0}(x)=\int_{-\infty}^{\infty} d t e^{-i t x}\left(1+t^{2}\right)^{-1 / 2}
$$

Remark: A version of this integral equation describes the problem of a viscous fluid past a semi-infinite plate; but you don't need to know this fact in order to solve the problem!
23. Solve the pair of the integral equations

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{d \zeta}{2 \pi} e^{i \zeta x} \mathcal{K}(\zeta) F(\zeta)=f(x), \quad x>0 \\
\int_{-\infty}^{\infty} \frac{d \zeta}{2 \pi} e^{i \zeta x} F(\zeta)=g(x), \quad x<0
\end{gathered}
$$

that have to be satisfied simultaneously, where $\mathcal{K}(\zeta), f(x)$ and $g(x)$ are known and $F(\zeta)$ is unknown.

