18.307: Integral Equations

M.I.T. Department of Mathematics Spring 2006 Due: Wednesday, 04/05/06

Homework 5

15. (Probs. 4.3 & 4.4 in text by M. Masujima.) By using Fourier transform, solve the integral equation

$$u(x) = f(x) + \lambda \int_{-\infty}^{\infty} dy \, e^{-|x-y|} \, u(y), \qquad -\infty < x < \infty,$$

for the following cases: (a) f(x) = x, x > 0; 0, x < 0, and (b) $f(x) = x, -\infty < x < \infty$. **Hint:** In (a) you must define the Fourier transform $\tilde{f}(k)$ of f(x) in the suitable part of the complex plane, so that the integral for $\tilde{f}(k)$ converges. In (b), you may write $f(x) = f_1(x) + f_2(x)$ where $f_i(x)$ (i = 1, 2) is zero for either x < 0 or x > 0, use the solution of part (a), and then superimpose to get the final solution.

16. (Prob. 5.9 in text by M. Masujima.) By using the bilinear formula for a symmetric kernel (which was given in class) show that, if λ is an eigenvalue of the symmetric kernel K(x, y), then the integral equation

$$u(x) = f(x) + \check{\lambda} \int_{a}^{b} dy \, K(x, y) u(y), \quad a \le x \le b,$$

has no solution, <u>unless</u> f(x) is orthogonal to <u>all</u> the eigenfunctions corresponding to λ .

17. Consider the Fredholm integral equation of the 2nd kind

$$u(x) = f(x) + \lambda \int_0^1 dy \min\{x, y\} u(y),$$

where $\min\{x, y\}$ denotes the smallest of x and y.

(a) Find all non-trivial solutions $u_n(x)$ and corresponding eigenvalues λ_n for $f \equiv 0$. **Hint:** Obtain a differential equation for u(x) with the suitable conditions for u(x) and u'(x).

(b) For the original inhomogeneous equation $(f \neq 0)$, will the iteration series converge? Explain.

(c) Evaluate the series $\sum_n \lambda_n^{-2}$ by using an appropriate integral.