18.307: Integral Equations
M.I.T. Department of Mathematics

Spring 2006
Homework 5

Due: Wednesday, 04/05/06
15. (Probs. $4.3 \& 4.4$ in text by M. Masujima.) By using Fourier transform, solve the integral equation

$$
u(x)=f(x)+\lambda \int_{-\infty}^{\infty} d y e^{-|x-y|} u(y), \quad-\infty<x<\infty
$$

for the following cases: (a) $f(x)=x, x>0 ; 0, x<0$, and (b) $f(x)=x,-\infty<x<\infty$.
Hint: In (a) you must define the Fourier transform $\tilde{f}(k)$ of $f(x)$ in the suitable part of the complex plane, so that the integral for $\tilde{f}(k)$ converges. In (b), you may write $f(x)=$ $f_{1}(x)+f_{2}(x)$ where $f_{i}(x)(i=1,2)$ is zero for either $x<0$ or $x>0$, use the solution of part (a), and then superimpose to get the final solution.
16. (Prob. 5.9 in text by M. Masujima.) By using the bilinear formula for a symmetric kernel (which was given in class) show that, if λ is an eigenvalue of the symmetric kernel $K(x, y)$, then the integral equation

$$
u(x)=f(x)+\check{\lambda} \int_{a}^{b} d y K(x, y) u(y), \quad a \leq x \leq b
$$

has no solution, unless $f(x)$ is orthogonal to all the eigenfunctions corresponding to $\check{\lambda}$.
17. Consider the Fredholm integral equation of the 2nd kind

$$
u(x)=f(x)+\lambda \int_{0}^{1} d y \min \{x, y\} u(y)
$$

where $\min \{x, y\}$ denotes the smallest of x and y.
(a) Find all non-trivial solutions $u_{n}(x)$ and corresponding eigenvalues λ_{n} for $f \equiv 0$.

Hint: Obtain a differential equation for $u(x)$ with the suitable conditions for $u(x)$ and $u^{\prime}(x)$.
(b) For the original inhomogeneous equation $(f \neq 0)$, will the iteration series converge? Explain.
(c) Evaluate the series $\sum_{n} \lambda_{n}^{-2}$ by using an appropriate integral.

