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Lectures 16 and 17 
Boundary Layers and Singular Perturbation 

A Regular Perturbation 
In some physical problems, the solution is dependent on a parameter K. When the parameter K is 

very small, it is natural to expect that the solution not be very different from the one with K set to 
zero. Consider for example the motion of a harmonic oscillator of unit mass with the spring constant 
equal to Ω1 + Ke?tæ. The equation of motion for this problem is 

x6 + Ω1 + Ke?tæx : 0, (9.1) 

with 

xΩ0, Kæ : 1, x% Ω0, Kæ : 0, (9.2) 

where xΩt, Kæ is the displacement of the harmonic oscillator and x% is the time derivative of x. 
Equation (9.1) can be solved in a closed form and the exact solution is a Bessel function. But if K 

is very small, the spring constant is approximately equal to unity at all times t ; 0, and to the 
lowest-order of approximation, we expect that we may ignore its small deviation from unity. Thus 
we have 

xΩt, Kæ u xΩt, 0æ : cos t. (9.3) 

To find the small correction due to the small deviation of the spring constant from unity, one may 
anticipate that, since the deviation is of the order of K, this small correction is of the order of K as 
well. Indeed, since all terms in (9.1) are analytic functions of K, we will try to see if there is a 
solution in the form of a Taylor series of K: 

xΩt, Kæ u x0Ωtæ + Kx1Ωtæ + ` + KnxnΩtæ + `, (9.4) 

where xnΩtæ is independent of K. Substituting (9.4) into (9.1) and (9.2), we get 

d2 
+ 1 øx0Ωtæ + Kx1Ωtæ + `¿ + Ke?tøx0Ωtæ + Kx1Ωtæ + `¿ : 0, (9.5) 

dt2 

x0Ω0æ + Kx1Ω0æ + ` : 1, (9.6) 

and 

x% 0Ω0æ + Kx% 1Ω0æ + ` : 0. (9.7) 

Setting K in the equations above to zero, we get 

x60 + x0 : 0, 

with 

x0Ω0æ : 1, and x%0Ω0æ : 0. 

The solution x0Ωtæ is just xΩt, 0æ given by (9.3). 
Setting to zero the coefficient of K on the leftside of (9.5), we get 

x61 + x1 : ?e?t cos t. (9.8) 

Similarly, we get from (9.6) and (9.7) that 

x1Ω0æ : 0. (9.9) 

x% 1Ω0æ : 0. (9.10) 

The solution of (9.8) satisfying (9.9) and (9.10) is 

5 
cos t ? 3 sin t + e?t 2 sin t 

5 
? cos t .x1Ωtæ : 1

5 
Since both x1Ωtæ and x0Ωtæ are OΩ1æ at all times and since K is very small, we have 

|Kx1Ωtæ|ò |x0Ωtæ| 

at all times, except when t is near the points where x0Ωtæ happens to vanish. 
One may further obtain the nth-order correction xnΩtæ from (9.5)–(9.7). We shall find that xnΩtæ is 

OΩ1æ at all times. Thus 
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|KnxnΩtæ|ò |Kn?1xn?1Ωtæ|. 

The inequalities above indicate that keeping more and more terms in the series of (9.4) makes the 
approximate solution better and better. 

The series (9.4) is a perturbation series, and the method given above in obtaining a perturbation 
series is called that of regular perturbation. 

B Boundary Layer Theory 
It may be surprising, but not all problems with a small parameter can be solved by regular 

perturbation. Let us start the discussion with a simple example. 
Consider the solution of the differential equation 

K 
dy 

+ y : 0 (9.11) 
dx 

with the initial condition 

yΩ0æ : 1. 

If we set K in the differential equation above to zero, we get 

yΩxæ : 0. 

But this approximate solution does not satisfy the initial condition. 
In order to understand why this is so, we solve this differential equation in a closed form. We 

find that 
/KyΩxæ : e?x . 

This solution of the differential equation satisfies the initial condition for all values of K not equal to 
zero. But if we set K to zero, the solution above vanishes, and the initial condition is not satisfied. 

Indeed, considered as a function of K, the solution of the differential equation has an essential 
singularity at K : 0. It is therefore no wonder that it does not have a Maclaurin series expansion. 

As a comparison, consider the solution of the equation 
dy 

+ Ky : 0 (9.12) 
dx 

with the same initial condition. The exact solution is 

yΩxæ : e?Kx . 

The approximate solution obtained by setting K in the differential equation to zero is 

yΩxæ : 1 

which is a good approximation of the exact solution when Kx is very small. 
What makes the method of regular perturbation applicable for one but not for the other? The 

answer lies in the fact that if we set K to zero, eq. (9.12) remains a first-order differential equation, 
while eq. (9.11) turns into an algebraic equation. Indeed, while it is always true that the magnitude of 
Ky is small compared to that of y, it is not always true that the magnitude of Ky r is small compared to 
that of y. This is because, if yΩxæ is a rapidly varying function of x, the magnitude of the derivative of 
yΩxæ is much larger than yΩxæ. In such a case, Ky rΩxæ may be of the same order of magnitude as yΩxæ. 

/Indeed, we may easily verify that this is true for the function yΩxæ : e?x K, the solution of (9.11). 
We encounter similar difficulties with boundary layer problems in fluid mechanics. Let us 

consider the second-order differential equation 

Ky rrΩxæ + aΩxæy rΩxæ + bΩxæyΩxæ : 0, (9.13) 

which generally cannot be solved in a closed form. We shall choose the interval in which (9.13) 
holds to be ø0, 1¿ . Typically, we require that the solution satisfies the boundary conditions: 

yΩ0æ : A, yΩ1æ : B. (9.14) 

The parameter K is very small, while A and B are OΩ1æ. Note that the small parameter K is the 
coefficient of y rr . 

This problem is a simplified model of the boundary layer problem in fluid mechanics. As we 
know, the highest-order term in the Navier-Stokes equation in fluid mechanics is equal to T42v3, 
where v3 is the velocity of the fluid and T is the kinematic viscosity. The kinematic viscosity is often a 
small parameter, and the order of the Navier-Stokes equation decreases if we ignore the viscosity. 

Equation (9.13) can be solved with good accuracy with the use of the WKB method. (See 
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homework problem 1.) However, we gain more insights to this problem by starting afresh. 

Let us set K : 0. Then (9.13) becomes 

aΩxæy r + bΩxæy : 0. 

This equation is readily solved and we get 

ysΩxæ : exp ?X bΩxæ 
dx . (9.15) 

aΩxæ 

The fact is that eq. (9.13) is of the second order, and has two independent solutions. But the 
approximate equation we obtain is of the first order, and has only one independent solution. Thus the 
approximate method we use yields only one of the independent solutions. This is to say that we lose 
one of the independent solutions as we set K in the differential equation to zero. It is impossible to 
satisfy the two boundary conditions of (9.14) with only one solution. 

How do we find the missing solution approximately? To get some insight into the answer, let us 
go to the much simpler case in which a and b are constants. Then the general solution of (9.13) is 
equal to 

c1er1x + c2er2x , 

where c1 and c2 are arbitrary constants and r1 and r2 are the roots of the quadratic equation 

Kr2 + ar + b : 0. 

This quadratic equation can be solved easily. But if we set K in this quadratic equation to zero, we get 
only one root 

r u ?b/a, 

which gives the solution 

e?bx/a . 

The solution is equal to the one denoted by ysΩxæ in (9.15) with aΩxæ and bΩxæ replaced by the 
constants a and b, respectively. The other root of the quadratic equation is obtained by solving the 
equation exactly. When K is very small, this root is approximately given by 

? a/K. 

This root tells us that the second solution of the differential equation is approximately 

e?ax/K 

y

. 

We see that this solution is a rapidly varying function of x. Indeed, it is a rapidly decreasing function 
of x if a is positive, and a rapidly increasing function of x if a is negative. 

That the missing solution is a rapidly varying function of x also explains why it is not always 
legitimate to drop the y rr term in (9.13). Let us denote the rapidly varying solution by yrΩxæ. Then 

r 
r Ωxæ is of the order of K?1 times yrΩxæ, and yr 

rrΩxæ is of the order of K?2 times yrΩxæ. Therefore, the 
term Kyr 

rrΩxæ is bigger than yrΩxæ by a large multiple of K?1. Again, while it is true that Ky, say, is 
always much smaller than y, it is not always true that Ky rr is much smaller than y. 

rOn the other hand, ys 
rr and ys are both of the same order of magnitude as ys. Thus it is justified to 

treat Ky rr as a small perturbation term. Thus we write (9.13) as 
rrΩxæ,aΩxæys 

r Ωxæ + bΩxæysΩxæ : ?Kys (9.16) 

and seek the solution ysΩxæ in the perturbation series 

ysΩxæ : yΩ
s 
0æΩxæ + KyΩ

s 
1æΩxæ +6 6 6. 

Substituting this series into (9.16), we easily find that ys 
Ω0æΩxæ is given by (9.15), and that 

aΩxæ d 
dx2 ys 

Ωn?1æΩxæ, n : 1, 2 6 6 6. (9.17) y
dx 

Ω
s
næΩxæ + bΩxæyΩ

s
næΩxæ : ? d2 

Thus ys 
ΩnæΩxæ, n : 1, 2, 6 6 6, satisfies a first-order ODE with the inhomogeneous term equal to the 

Ω0ænegative of the second-order derivative of ys 
Ωn?1æΩxæ. Once ys is found, we may then solve (9.17) 

Ω1æwith n : 1 and obtain ys . Similarly, all yΩ
s
næΩxæ, n : 2, 3, 6 6 6, can be obtained by successive 

iteration. 
We remark that, by treating Kys " as a small perturbation, we have implicitly assumed that the 

solution is slowly varying. Since all terms in the perturbation series so obtained are slowly varying, 
the assumption is justified and the method of regular perturbation produces succesive 
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approximations of the slowly varying solution. On the other hand, this method cannot produce the 
rapidly varying solution. Clearly, if the solution is rapidly varying, it is not justified to treat Ky rr as a 
small perturbation term. 

To find successive approximations of the rapidly varying solution, we note that, when aΩxæ and 
bΩxæ are constants, the rapidly varying function is expΩ?ax/Kæ. Thus we surmise that, when aΩxæ and 
bΩxæ depend on x, the rapidly varying solution is approximately exp ?K?1 X aΩxædx . Therefore, we 
shall put 

yrΩxæ : exp ?K?1 X aΩxædx vΩxæ. (9.18) 

With the rapidly varying behavior of yrΩxæ taken up by the exponential factor, we expect vΩxæ to be 
slowly varying. Substituting (9.18) into (9.13), we get 

v : Kv rr av r + Ωar ? bæ . (9.19) 

Treating the term Kv rr as a small perturbation we may solve (9.19) with regular perturbation. We put 

vΩxæ : v0Ωxæ + Kv1Ωxæ +6 6 6, (9.20) 

and get 

X bΩxæ 
v0Ωxæ : 

aΩ
1 
xæ 

exp dx (9.21) 
aΩxæ 

as well as 
d2 

a d vn + Ωar ? bævn : 
dx2 vn?1. (9.22) 

dx 

Note that, just like (9.17) for ys 
Ωnæ, (9.22) is a first-order differential equation for vn and can be solved 

in a closed form. Thus we may obtain all vn by successive iteration. We note that this prodecure 
yields us only the solution which is in the form of (9.18), where v is slowly varying. Hence it does 
not yield ys. 

If yrΩxæ is rapidly decreasing, we expect that it is appreciable only in a small neighborhood near 
the lower endpoint x : 0, and drops to very small values as x gets away from the origin. The graph 
for the solution (9.23) has a bump near x : 0. The solution is said to have a boundary layer near the 
lower endpoint. 

Similarly, if yrΩxæ is rapidly increasing, we expect it to be appreciable only near the upper 
endpoint x : 1. 

In a specific calculation, we may, instead of pluggin in a and b into the formulae given above, 
obtain both yout and yinΩxæ directly from (9.13). First of all, the differential equation for yout is 
obtained by neglecting the term Ky rr in (9.13). The resulting equation is of the first-order and can be 
solved in a closed form. The multiplicative constant in this solution can be fixed with the boundary 
condition at the endpoint where yrΩxæ is negligible. The equation for yin can be obtained by treating 
the functions a and b as constants. 

Problem for the Reader:

Solve approximately the equation


Ky rr + Ω1 + xæy r + y : 0, 0 9 x 9 1, 

with the boundary conditions 

yΩ0æ : yΩ1æ : 1. 

Answer 
We have 

aΩxæ : 1 + x ; 0, 

thus yrΩxæ is rapidly decreasing and there is a boundary layer near x : 0 with a width of order K. 
For x outside of the boundary layer, we have 

rΩ1 + xæyout + yout : 0. 

Thus we get 

— 4 — 



e
u

Boundary Layers and Singular Perturbation 
cyoutΩxæ : 

1 + x 
. 

The constant c is determined from the boundary condition at x : 1 and we have 
2youtΩxæ : 

1 + x 
. 

In particular, 

youtΩ0æ : 2. 

To obtain yinΩxæ near x : 0, we make the approximation 

aΩxæ u aΩ0æ : 1. 

Thus 
rr Kyin + yin u 0. 

Therefore we have 
/KyinΩxæ : 2 + c re?x . 

The boundary condition 

yΩ0æ : 1 

requires that 

c r : ?1. 

Thus 
/KyinΩxæ : 2 ? e?x . 

We also find that 

yuniform : 2 ? e?x/K .
1 + x 

The solution is plotted in the figure below. We see that it is given by 2/Ω1 + xæ almost everywhere. 
But the function 2/Ω1 + xæ does not satisfy the boundary condition at x : 0. Thus the rapidly varying 
solution yr kicks in near the point x : 0 and the solution y goes through a rapid transition inside the 
boundary layer. 

0 1 

1 

2 

x 

e 

e 

l i
ni l i

0.2 0.4 0.6 0.8 
0.8 

1.2 

1.4 

1.6 

1.8 

y(
x)

 

= 0.1 

= 0.01 

xact so ut on 
form so ut on 

Figure 9.1. 

C Turning Points 
In the preceding section, we assume that aΩxæ is of the same sign throughout the interval in which 

the differential equation (9.13) holds. The solutions yrΩxæ and ysΩxæ, given by (9.24) and (9.15) 
respectively, are good approximations of the two independent solutions of the differential equation. 

But if x0 is a simple zero of aΩxæ, the function aΩxæ changes sign at x0, and the approximations 
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we have made in the preceding section fail in the neighborhood of x0. Borrowing the terminology in 
quantum mechanics, we shall call x0 a turning point of eq. (9.13). 

To obtain approximate solutions near a turning point, we approximate aΩxæ and bΩxæ in (9.13) by 
algebraic functions of x, and solve the resulting equation exactly. This is the same approach as the 
one used to handle the turning point of the wave equation discussed in Chapter 7. The only 
difference is that the approximate solutions for (9.13) near a turning point are parabolic cylinder 
functions rather than Airy functions, as we shall show. 

It will be convenient get rid of the y r term in (9.13). Let us write (9.13) as 
aΩD + K æDy + b 

K y : 0. 

This tells us that, to eliminate the y r term, we put 
r

y : ? Xx 
exp 

aΩx æ
dx r YΩxæ. (9.42) 

2K 

This is because, as we move the exponential factor to the left of D, we make the replacement 

D î D ? 
2
a 
K 

. 

Thus eq. (9.13) becomes 

D + a D ? a Y + b 
K Y : 0, 

2K 2K 
or 

D2Y + 
2bΩxæ ? arΩxæ ? 

a2Ωxæ 
Y : 0. (9.43) 

2K 4K2 

Since 1/Ω4K2æ is very large, we see that an alternative way to solve eq. (9.43) is to use the WKB 
method, approximating NΩxæ in (7.16) by 

a2 + 2KΩa r ? 2bæ P a P ar ? 2b 
4K2 p 

2K 
+ 

2 P a P 
. 

The WKB approximation is valid provided that aΩxæ does not vanish. This approximation yields 
for Y two WKB solutions, one of them a rapidly increasing function of x, while the other a rapidly 
decreasing function of x. To obtain the solutions of (9.13), we multiply these two WKB solutions by 
the exponential factor of (9.42), getting the slowly varying solution ys and the rapidly varying 
solution yr. (See homework problem 1). 

x
The WKB approximation fails at a turning point. Let x0 be a turning point. We shall assume that 

0 is a simple zero of aΩxæ. Then we have, near x : x0, 

aΩxæ u FΩx ? x0æ 

and 

bΩxæ u G. 

By (7.18), the WKB approximation holds only if 
P x ? x0 P;; 
Fortunately, when 

K . 
x is close to x0, or more precisely 

P x ? x0 P99 1, 
eq. (9.43) is approximately 

d2Y + 
2G ? F F2Ωx ? x0æ2 

? Y u 0, (9.44) 
2K 4K2dx2 

which we will be able to solve in a closed form. 
x x0

? 
FΩx ? x0æ2 

4K 
. 

x x0 y Y 

Before we show how to do this, we first note that, when is near , we have 

Thus, for close to , the solution is related to by 

? Xexp 
rx aΩx æ 

x0 
dx r 

2K 
p exp 

y u e?FΩx?x0æ2/Ω4KæY. (9.45) 

We here take note that, if F is positive, the factor multiplying Y in (9.45) drops exponentially as 
|x ? x0| increases; on the other hand, if F is negative, this factor grows exponentially as |x ? x0| 
increases. 
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We shall scale the variable Ωx ? x0æ by 

x ? x0 : K 
|F| 

X. (9.46) 

Then (9.44) becomes 

? 
signΩFæd2Y (9.47) + 

G 
|F| 2 

? X2 
Y : 0,

4 

where 

signΩFæ : F/|F|. 

We note that, with the independent variable scaled this way, the resulting equation (9.47) is 
independent of the small parameter K. As a result, the solution of (9.47) varies by an amount OΩ1æ 

dX2 

the order of

X OΩ1æ X 
Ωx ? x0æ K F 

K x0.
x : x0 

,

, 

when varies by an amount . Thus we say that the scale of is unity. By (9.46), the scale of 
is . ( We have made the implicit assumption that is of the order of unity.) Therefore,

there is a boundary layer with width near the turning point 
There is a way to see directly from (9.13) that the width of the boundary layer near is of

K . Let us choose x0 : 0 for convenience and write eq. (9.13) near the turning point as 

Ky rr + Fxy r + Gy u 0. 

To determine the scale of x, we make the change of variable 

x : JX. 

Then we have 
K d2 

dX 
y + Gy : 0. 

J2 dX2 y + FX d 

We see that if we choose 

J : K , 

the differential equation above is independent of the small parameter K. Thus both solutions 
expressed as functions of X are independent of K. This means that the scale of X for these solutions is 
unity, or the scale of x for these solutions is K as concluded earlier. 

Equation (9.47) is a parabolic cylinder equation, which is usually written in the generic form 
d2` 

+ ΩT + 1/2 ? z2/4æ` : 0. (9.48) 
dz2 

One of the solutions of eq. (9.48) is the parabolic cylinder function denoted by DTΩzæ. Since equation 
(9.48) is unchanged with the replacement of z î ?z, DTΩ?zæ also satisfies equation (9.48). In 
addition, (9.48) is unchanged if we make the replacements z î iz as well as T î ?T ? 1. Thus 
D?T?1Ωizæ and D?T?1Ω?izæ are also solutions of eq. (9.48). 

We shall choose the two independent solutions of y near the turning point to be 

y1 : e?Fx2/Ω4KæDT 
|F| x (9.49) 
K 

and 

y2 : e?Fx2/Ω4KæDT ? |F| x (9.50) 
K 

where 
G ? 

signΩFæ + 1
T : 

|F| 2
. 

The asymptotic forms of the parabolic cylinder function are given by 

DTΩXæ u XTe?X2/4 , X î K, 

2Z 
|X|?T?1eX2/4,u X î ?K. 

<Ω?Tæ 
We shall replace the parabolic cylinder functions in (9.49) and (9.50) by these asymptotic forms 
when |X| is large. 
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The qualitative behaviors of y1 and y2 depend on the sign of F. This is because the exponential 

factor in (9.49) and (9.50) are either growing exponentially or vanishing exponentially as |X| 
becomes large, depending on the sign of F. Thus there are two separate cases to discuss. 

Case of F ; 0

For F ; 0, we have


G

T : F ? 1. 
Also, the exponential function vanishes as |X| increases. Thus we have


y1 î ΩXæ?1+G/Fe?X2/2,
 X î K, 

î 
2Z 

Ω|X|æ?G/F , X î ?K (9.51) 
<Ω1 ? G/Fæ 

and 

2Z 
X?G/F , X î Ky2Ωxæ î 

<Ω1 ? G/Fæ 

î P X P?1+G/F e?X2/2, X î ?K. (9.52) 

The behaviors of these two functions are schematically illustrated below: 

2y1y 

a < 0 a > 0 a < 0 a > 0 

Figure 9.2. 
In the region x ; 0, y1 is the rapidly varying function, and y2 is the slowly varying solution, 

while in the region x 9 0, y1 is the slowly varying solution and y2 is the rapidly varying solution. The 
role of y1 interchanges with that of y2 as one crosses the turning point. 

Case of F 9 0

We have


G
T : ? F . 
Also, the exponential function blows up as P X P becomes large. Thus


y1 î X?G/F ,
 X î K, 

î
<ΩG

2
/
Z
Fæ 

|X|?1+G/FeX2/2, X î ?K, (9.53) 

and 

y2 î
<ΩG

2
/
Z
Fæ 

X?1+G/FeX2/2, X î K, 

?G/Fî |X| , X î ?K. (9.54) 

We illustrate in the figure below the behaviors of y1 and y2 for F 9 0. 
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2y1y 

Figure 9.3. 
In the region x ; 0, y2 is the rapidly varying solution and y1 the slowly varying solution. And in 

the region x 9 0, y1 is the rapidly varying solution and y2 is the slowly varying solution. 
In the next three sections, we shall show how to match these approximate solutions valid inside 

the neighborhood of the turning point with the approximate solutions valid outside of the 
neighborhood of the turning point. 

D Turning Point at an Endpoint 

Ky

Problem for the Reader: 
Solve approximately 

rr + 2xy r + Ω1 + 3x3æy : 0, 0 9 x 9 1, K ò 1, 

with the boundary conditions 

yΩ0æ : 0, yΩ1æ : 1. 

Answer 
Since aΩxæ : 2x ì 0, the rapidly varying solution is a decreasing function of x. There is a 

boundary layer at x : 0. Since x : 0 is also a turning point, the width of the boundary layer near 
x : K . 

yr x ô 
0 is 
The solution is negligible outside of the boundary layer. Thus, when K , the solution is 

equal to yout which satisfies 
r2xyout + Ω1 + 3x3æyout : 0. 

This equation yields 

youtΩxæ : 
x 

1 e?x3/2, 

where we have made use of the boundary condition at x : 1. 

22/

x : 

Ω2Kæ c1D?1

x 

Inside the boundary layer near 0, we have 

These solutions are good approximations if 99 1. 

x + c2D?1/ xyinΩxæ : e?x
/2 

K 
2 ? 2 

K . 

There are two arbitrary constants, c1 and c2. We determine one of these constants by matching 
yinΩxæ with youtΩxæ in the overlapping region where both approximations are valid. The parabolic 
cylinder function solution is valid when x 99 1, while by (7.18), the WKB solutions are valid when 

P d K P99 1, xdx 
or 
x K . 

K x 
x ô K 

;; 
Thus the overlapping region is 

99 99 1. 
When we have 

/4x?1/2yinΩxæ u c2Ω2Kæ1 . 
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Also, when x ò 1, we have 

/2youtΩxæ u x?1 . 
/We note that both yinΩxæ and youtΩxæ are equal to a constant times x?1 2 in the region 1 ô x ô 

hold. Joining yinΩxæ with yout in this region, we get 
/4 

c

c2 : Ω2Kæ?1 . 

From the boundary condition at x : 0, we get 

1 : ?c2. 

Thus we have 

yinΩxæ : e?x2/Ω2KæΩ2Kæ?1 ?D?1/2 
2 
K x + D?1/2 ? 2 

K x/4 . 

y Ω0æ y Ωxæ 

. 

As a final observation, we note that out is infinite. But as we continue out into the region of 
the boundary layer, it turns into 

e?x2/Ω2KæΩ2Kæ?1/4D?1/2 ? 2 
K x 

/At x : 0, the expression above is equal to Ω2Kæ?1 4D?1/2Ω0æ, which is a large number but is not 
infinity. 
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