
Singular Points of Ordinary Differential Equations 

Lecture 7 Regular Singular Points of Ordinary 
Differential Equations 

Let us consider the Bessel equation 

x2 d
2y 

+ x 
dy ? p2y : ?x2y. (6.22) 

dx2 dx 
Let us seek the solution of the Bessel equation which is some kind of expansion around the point 
x : 0. 

When x2 is much smaller than p2, we make the approximation of neglecting x2y as it is much 
smaller than p2y. In this approximation we set the right-side of (6.22) to zero. We note that the 
resulting ODE is equidimensional. Thus the solution of the resulting equation is of the form xs . 
Substituting this solution into the differential equation, we get 

sΩs ? 1æ + s ? p2 : 0, 

or 

s : p, or ? p. (6.23) 

Thus the approximate solutions are 

yΩxæ u xp or x?p, (6.24) 

which are good approximations when x is small. 
Let us seek an improvement of the approximate solutions of (6.24). 
We express y as 

yΩxæ :> anxn+s . (6.26) 

As before, we shall understand that 

a?1 : a?2 : ` : 0. 

We shall require that 

a0 é 0. 

This means that a0xs is by assumption the first non-vanishing term in the series solution of the 
Bessel equation. The series in (6.26) is called the Frobenius series. We shall show that, as we 
substitute (6.26) into the Bessel equation, we determine the index s as well as the coefficients an, 
n : 1, 2 6 6 6. The values of the coefficients an, n : 1, 2 6 6 6, depend on the value of s as well as a0. 
There are two possible values of s, and hence we obtain, except in some special cases, two Frobenius 
series solution of the Bessel equation. The general solution of the Bessel equation is a linear 
superposition of these two solutions. This method is known as that of Frobenius. 

Problem for the Reader:

Find the recurrence formula for the Bessel equation.


Answer

Determining the dimensions of the terms in the equation will help to reduce the chore of 

calculation. This is because as we apply two operators of the same dimension to a Frobenius series, 
the two resulting series can be added together without re-assigning the index of summation, as both 
operators change the power of xn+s by the same amount. Thus it will save both space and labor if we 
handle the operators with the same dimension at the same time. 

The only term in the Bessel operator Ωx2D2 + xD + x2 ? p2æ of dimension 2 is x2. We have 

x2y :> anxn+s+2 :> an?2xn+s . 
n n 

The rest of the terms in the Bessel operator are of dimension zero, and we will take care of all of 
them at the same step. We have 

Ωx2D2 + xD ? p2æy : >øΩn + sæΩn + s ? 1æ + Ωn + sæ ? p2 ¿anxn+s?2. 

Thus the recurrence formula for the Bessel equation is 

Ωn + s + pæΩn + s ? pæan : ?an?2. (6.27) 
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We note that there are only two coefficients in (6.27): an and an?2 . This is because there are only 
two different dimensions for the operators in the Bessel equation. 

To obtain the solution of the Bessel equation, we first set n : 0 in (6.27). Since a?2 is zero and 
since a0 é 0, we get 

Ωs + pæΩs ? pæ : 0. (6.28) 

Equation (6.28) is called the indicial equation. It determines the index s to be either s1 or s2. We get 

s1 : p, s2 : ?p, 

in agreement with (6.23). Without loss of generality, we may assume that Re p ì 0, and hence 
Re s1 ì Re s2. 

Next we write (6.27) as 

an : ? an?2 , n ; 0. (6.29) 
Ωn + s + pæΩn + s ? pæ 

Problem for the Reader:

Solve the recurrence formula (6.29).


a

Answer

Let us set n : 2m in (6.29). We get


2m : ? 
a2

p 
Ωm?1æ .


4Ωm + s+ æΩm + s?p æ2 2 

a

By applying the above recurrence formula m times, we get with the help of (6.10) that


2m : Ω?1æm a0<Ω1 + s/2 + p/2æ<Ω1 + s/2 ? p/2æ
 . (6.30) 
4m<Ωm + s/2 + p/2 + 1æ<Ωm + s/2 ? p/2 + 1æ 

The right-side of (6.30) depends on s, with the two values of s determined from the indicial 
equation (6.28) given by (6.23). 

Problem for the reader: 
Find a solution of the Bessel equation. 

Answer 
Setting s : p in (6.30), we get 

a2m : Ω?1æm <Ω1 + pæa0 . (6.31) 
4m<Ωm + p + 1æ<Ωm + 1æ 

Thus one of the solutions of the Bessel equation is 

2

2m+px 
(6.32) JpΩxæ :> Ω?1æm 

<Ωm + p + 1æ<Ωm + 1æ 
, 

n*0 

where the immaterial constant multiple a0<Ω1 + pæ has been ignored. The function JpΩxæ is known to 
be the Bessel function of order p. 

We may get a second solution of the Bessel equation by choosing s in (6.30) to be the other 
index ?p. But there is a slightly easier way. The Bessel equation is unchanged as we replace p by ?p. 
Thus another solution of the Bessel equation is obtained by replacing p in (6.32) by ?p. The solution 
obtained is J?pΩxæ. 

By (6.29), the ratio an/an?2 vanishes like 1/n2 as n î K. Thus the series (6.32) converges for all 
values of x. Therefore, the series is not only useful as an approximate series when x is small. It is 
meaningful even if x is not small. However, when x is large, it is inefficient to calculate the values of 
the Bessel function JpΩxæ with the series (6.32). Also, the series hardly tells us anything about the 
qualitative behavior of the Bessel function for large values of x. To get a hold on the behavior of the 
Bessel function for large values of x, it is a good idea to obtain its expansion in the variable x?1, 
rather than the variable x. 

y

Consider now the general second-order linear homogeneous differential equation 
rr + cΩxæy r + dΩxæy : 0. (6.38) 

If cΩxæ and dΩxæ are both analytic at x0, x0 is called an ordinary point of (6.38). And if either cΩxæ or 
dΩxæ or both have a singularity at x0, x0 is called a singular point of (6.38). 

If x0 is an ordinary point of (6.38), we may obtain the two independent solutions of (6.38) by 
seeking them in the form of a Taylor series expanded around x0: 
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yΩxæ : > anΩx ? x0æn , a?1 : a?2 : ` : 0. 

a

The coefficients an, n : 2, 3 6 6 6, are determined from the recurrence formula obtained by plugging 
the series into the differential equation. These coefficients are dependent on a0 and a1, which are 
arbitrary constants. We get two independent solutions, the first being obtained with the choice of 

0 : 1 and a1 : 0, and the second one being obtained with the choice of a0 : 0 and a1 : 1. 
Let x0 be a singular point of (6.38). There are two kinds of singular points. If x0 is a singular 

point of (6.38) with Ωx ? x0æcΩxæ and Ωx ? x0æ2dΩxæ both analytic at x0, then x0 is called a regular 
singular point of (6.38). 

The Bessel equation (6.22) takes the form 

1 ? p2 
y : 0. y rr + 1 

x y r + 
x2 

Comparing with (6.38), we find that the coefficient cΩxæ and dΩxæ for the Bessel equation are x?1 and 
Ω1 ? p2/x2æ, respectively. The point x : 0 is a regular singular point of the Bessel equation, as cΩxæ 
has a simple pole and dΩxæ has a double pole at this point. 

Retuning to (6.38). We may obtain the solutions of (6.38) expanded around a regular singular 
point x0 in the same way we obtained the solutions of the Bessel equation expanded around x : 0. 
More precisely, we seek these solutions in the form of the Frobenius series 

n+syΩxæ :> anΩx ? x0æ , (6.39) 
n 

with 

a?1 : a?2 : ` : 0. 

The series is convergent at least up to the next singular point of (6.38). 
Finally, if either Ωx ? x0æcΩxæ or (x ? x0æ2dΩxæ or both are not analytic at x0, then x0 is called an 

irregular singular point of (6.38). 
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