
The WKB Approximation 

Lectures Nine and Ten The WKB 
Approximation 

The WKB method is a powerful tool to obtain solutions for many physical problems. It is 
generally applicable to problems of wave propagation in which the frequency of the wave is very 
high or, equivalently, the wavelength of the wave is very short. The WKB solutions are approximate 
solutions, but sometimes they are surprisingly accurate. In this chapter we’ll discuss this method, 
which is applicable to linear equations only. 

A The Zeroth and the First-Order WKB 

We consider the second-order differential equation 

y rr + p2y : 0. (7.1) 

If p is a constant, the two independent solutions of (7.1) are expΩçipxæ, waves with wave number p 
travelling in opposite directions of the x-axis. 

If p is a function of x, it appears reasonable that the solutions are two waves with the phase 
ç X pΩxædx. Thus we may surmise that the independent solutions of (7.1) are 

çi X pΩxædx 
e , (7.2) 

which are the zeroth-order WKB solutions. 
Let us see if these solutions satisfy (7.1). We have 

çi X pΩxædx çi X pΩxædx d2 
+ p2 e : çipre é 0. Ω7.3æ 

dx2 

Therefore, the WKB solutions (7.2) do not satisfy (7.1) unless pr : 0, or p is independent of x. 
While we get a negative answer, (7.3) suggests that expΩçi X pΩxædxæ are good approximate 

solutions of (7.1) provided that çipr is negligible, or, more precisely, if 

|pr| ò p2, 

the left-side of this inequality being a term inside the parenthesis of (7.3). The inequality above can 
be written as 

d 1 ò 1. (7.4) pdx 
This condition is satisfied if pΩxæ is of the form 

pΩxæ è RPΩxæ, (7.5) 

where R is a large constant, i.e., 
R ;; 1, (7.6) 
and PΩxæ is of the order of unity. Indeed, if pΩxæ is given by (7.5), the inequality (7.4) is


1 d 1
 ò 1. (7.7) R dx PΩxæ 
Clearly, (7.7) is satisfied if R ;; 1, provided that x is not near a zero of PΩxæ. 
We note that the phases of the solutions expΩçi X pΩxædxæ are functions of x, but the magnitudes 

of these approximate solutions are independent of x. Let us remember that, in Chapter 1, we have 
shown that if y1 and y2 are two independent solutions of (7.1), then the Wronskian 

r rWΩxæ è y1y2 ? y1y2 is independent of x. Now the Wronskian of expΩi X pΩxædxæ and expΩ?i X pΩxædxæ 
is easily shown to be equal to 2ipΩxæ, not a constant unless pΩxæ is a constant. This suggests that these 
approximate solutions still leave something to be desired. Because the Wronskian of the 
approximate solutions miss by a factor pΩxæ, let us try to fix it by adding an additional factor 1/ pΩxæ 
to each of the approximate solutions. The resulting approximate solutions are 

çi X pΩxædx çyWKB Ωxæ : 1 e . (7.8) 
pΩxæ 

which includes both the zeroth order and the first order terms of the WKB approximations. 
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The WKB Approximation 
çThe magnitude of these solutions varies with x like 1/ pΩxæ . The Wronskian of yWKB Ωxæ is now 

exactly a constant. (See homework problem 1.) It is therefore tempting to surmise that, under the 
çi X pΩxædx çcondition (7.4) or equivalently, (7.7), yWKB Ωxæ are even better approximations than e . 

To see if this is true, we put 

çi X pΩxædx 
y è e v, Ω7.9æ


and substitute this expression of y into (7.1). We get

ΩD ç ipæΩD ç ipæv + p2v : 0.

or


ç 2ip d
Ω d2 

dx 
ç ipræv : 0. 

dx2 

We shall write the equation above as 

v r + pr 
v : ç 

2
i
p 

v”. (7.10) 
2p 

By (7.5), (7.10) can be written as 

v r + Pr 
v : çK i v rr , (7.11) 

2P 2P 
where 

L è 1/R 

is a small number. In the first-order approximation, we ignore the right side of (7.11) and we get 

v r + Pr 
v u 0, (7.12) 

2P 
which gives 

vΩxæ u .1 (7.13) 
PΩxæ 

Thus (7.9) and (7.13) give, aside from an immaterial overall constant, the WKB solutions (7.8). 
We have mentioned that if PΩxæ has a zero at x0, the inequality (7.10) does not hold at x0. To see 

how far away from x0 it must be for the WKB approximation to hold, let PΩxæ near x0 be 
approximately given by 

PΩxæ u aΩx ? x0æn , x u x0. (7.14) 

Then (7.7) requires 

|x ? x0| ô n 
Ra 

1/Ωn+1æ 
. (7.15) 

Eq. (7.15) tells us how far away from x0 it must be for the WKB approximate solutions to be valid. 
If PΩxæ vanishes in the way given by (7.14), we say that PΩxæ has an nth-order zero at x0. Not all 

zeroes of PΩxæ are of finite order, and an example of PΩxæ having a zero of infinite order is given by 
homework problem 6. The range of validity of the WKB solutions of homework problem 6 is given 
in homework problem 5b. 

As we have mentioned, the WKB approximation is useful for describing the propagation of waves 
with very high frequencies or, equivalently, very small wavelengths. As an example, consider the 
problem of determining the shadow cast on a wall by a point light source in front of a screen. To 
obtain the exact solution of this problem, one solves the wave equation and make the solution satisfy 
the boundary conditions imposed by the presence of the screen, which is a difficult boundary-value 
problem. On the other hand, the shadow on the wall is very accurately determined simply by 
drawing straight lines from the light source to the edges of the screen. This is because when the 
wavelength of light is very small compared to the dimensions of the screen, the WKB approximation 
can be used to justify the results obtained with the use of geometric optics. footnote As another 
example, we know that Newtonian mechanics is an approximation of quantum mechanics. However, 
the behavior of atoms obeying the rules of wave mechanics is drastically different from that of 
particles obeying the rules of Newtonian mechanics. How does one reconcile these two sets of rules? 
The answer again lies in the WKB approximation, in which the Schrodinger equation is reduced to 
the Hamilton-Jacobi equation satisfied by the classical action of Newtonian mechanics. 

The WKB approximation can also be used to solve problems in which the functional behavior is 
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rapidly growing or rapidly decaying other than rapidly oscillatory, an example being the problems of 
boundary layer which we will discuss in Chapter 9. Consider the equation 

y rr ? N2y : 0. (7.16) 

The WKB solutions are given by 

çyWKB Ωxæ : 1 e 
çX NΩxædx 

. (7.17) 
NΩxæ 

These solutions are good approximations of the solutions of (7.16) if 

d 
dx 

1 
NΩxæ 

ò 1. (7.18) 

The counterpart of (7.5) is 

NΩxæ : RNΩxæ, (7.19) 

where R ô 1 and NΩxæ is of order unity. As before, if N is in the form (7.19), the inequality (7.18) is 
always satisfied unless x is near a zero of NΩxæ. 

The WKB approximation can be justified under other conditions. For example, it is easy to 
verify that (7.4) is satisfied if pΩxæ is of the form 

pΩxæ : PΩKxæ, K ò 1, (7.20) 

where we have a small parameter K rather than a large parameter R. If we make the change of 
variable 

X : Kx, 

then (7.1) becomes 
d2y + R2P2ΩXæy : 0, 
dX2 

where the large parameter R : K?1 appears. 
Sometimes the large parameter R is not explicitly exhibited. As an example, consider the 

problem of solving the Airy equation y rr ? xy : 0 when x is very large. In this problem, x inherently 
contains a large parameter. Indeed, let x be of the order of ?, with ? ô 1. We may put 

d

x è ?X, 

where X is of the order of unity. Then the Airy equation is 
2 

? ?3X y : 0. 
dX2 

Comparing with (7.16), we have, if X is positive, 
/2NΩXæ : RX1 , 

where R è ?3/2 is the large paramater. 
We also note that the integral X pdx is dimensionless and hence does not change with a change of 

the scale of the independent variable. In the example of the Airy equation, we have 
/ /X RX1 2dX : X x1 2dx. 

Indeed, since the dimension of the wavelength is that of length, same as that of x, the leftside of (7.4) 
is dimensionless. Thus (7.4) can be expressed either with the variable X or with the variable x, as 

d 1 : d 1 
dX RX1/2 dx x1/2 

. 

B Solutions Near an Irregular Singular Point 
We will now apply the WKB method to obtain the asymptotic solutions near an irregular 

singular point of a second-order linear homogeneous equation. While we have already given a 
method in the preceding section to obtain these solutions, it applies only when the rank of the 
singular point is an integer. In addition, the use of the WKB method makes it very easy to obtain the 
leading terms of the asymptotic series. 

y

To start, we consider the leading asymptotic terms for the solutions of the equation 
rr + xy : 0. (7.21) 
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For x 9 0, we have, comparing with (7.16), 

/2N : Ω?xæ1 . 

Thus the WKB solutions are 
?1/4eç2|x|3/2/3|x| . (7.22) 

We conclude immediately that, when x is large and negative, one of these solutions is an 
exponentially increasing function of x and the other is an exponentially decreasing function of x. 

When x is positive, we have, comparing with (7.1), 
/2p : x1 . 

Thus the WKB solutions are 

x?1/4eçi2x3/2/3, (7.23) 

both being oscillatory functions of x. 

C Higher-order WKB Approximation 
We shall in this section find the higher-order terms of the WKB approximation. 
For this purpose let us return to eq. (7.11). Since this equation has a small parameter K and is 

linear, it is straightforward to use it to derive successive corrections to the WKB approximations. We 
put 

v : v0 + Lv1 + K2v2 + 6 6 6, (7.38) 

where vn, n : 0, 1 6 6 6., are independent of K. The series in (7.38) is called a perturbation series 
which is expected to be useful when K is small. We substitute (7.38) into (7.11) and get 

r + Pr 
Ωv0 + Lv1 + K2v2 + `æ Ωv0 + Lv1 + K2v2 + `æ

2P 
rr: ç iK Ωv0 + +Lv1 + K2v2 + 6 6 6æ . (7.39) 

2P 
In the lowest-order approximation we set K in (7.39) to zero and get 

r + Pr 
v0 v0 : 0. 

2P 
This equation gives 

v0Ωxæ : 1 , 
PΩxæ 

which is, aside from an immaterial constant multiple, (7.13). 
Setting to zero the sum of terms in (7.39) which are proportional to K, we get 

v

rr 

1 
r + PrΩxæ i 1v1 : ç . (7.40) 

2PΩxæ 2PΩxæ PΩxæ 

Solving this first-order linear equation, we find that 
rr 

2 
1 1v1Ωxæ : ç i X dt. # 

PΩxæ PΩtæ PΩtæ 

Now we are ready to give a justification of the WKB method, which is approximating the solution of 
(7.1) by truncating the series of (7.38). Strictly speaking, truncating a series is justified if we succeed 
in proving that the sum of terms neglected is much less than the sum of terms kept. But proving this 
is sometimes difficult to do. We shall be content with proving that the Ωn + 1æ th term in the series is 
much less than the nth term if K is sufficiently small. Thus we will accept the WKB solutions (7.5) 
are good first-order approximations if 

|Kv1| ò |v0|. (7.42) 

Since K is small, (7.42) is satisfied provided that v1Ωxæ/v0Ωxæ does not blow up, which is true unless 
PΩxæ happens to vanish. 

If PΩxæ vanishes at x0, the differential equation (7.1) is said to have a turning point at x0. At a 
turning point of the differential equation, both v0Ωxæ and v1Ωxæ blow up, and the WKB approximation 
fails. 

How far away from the turning point it must be in order for the WKB approximation to work? If, 
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when x is near x0, PΩxæ goes to zero like Ωx ? x0æn , then v1Ωxæ blows up like 

Ωx ? x0æ
?1?3n/2 , (7.43) 

/while v0Ωxæ blows up like Ωx ? x0æ?n 2. Thus (7.42) requires 

|x ? x0| ô 
R1/Ω

1
1+næ 

. (7.44) 

Aside from a multiplicative constant, (7.44) is the same condition as (7.15). 
We may find all higher-order terms of the solution from (7.39). This is done by gathering all the 

terms in (7.39) proportional to Km and setting the sum to zero. We get 
rrvm 

r + Pr 
vm : ç i vm?1. (7.45) 

2P 2P 
Thus 

vmΩxæ : ç 
2

i X dx d2 

vm?1Ωxæ. (7.46) 
PΩxæ PΩxæ dx2 

From (7.46), we obtain the mth-order term of the perturbation series once the Ωm ? 1æ th-order term of 
the perturbation series been found. Thus we obtain all vm by succesive iteration. 

If PΩxæ has no zero, all vm are finite. When K is sufficiently small, we have 
|Kvm| ò |vm?1|. (7.47) 
Thus the WKB approximation is justified to higher orders. Here we like to give the reader a 

reminder: the WKB approximation has been justified to higher orders only if pΩxæ is of the form 
(7.5), or NΩxæ is of the form of (7.19), and neither of them vanish. I feel obligated to say it as I have 
seen the WKB approximations being too liberally applied. 

We may show that, if PΩxæ vanishes at x0, and is given by (7.14) near x0, the condition (7.47) is 
satisfied provided that x is sufficiently far away from x0 so that (7.15) is satisfied. (See homework 
problem 3.) 

Similarly, to obtain successive approximations to the WKB solutions of (7.16), we put 

çX NΩxædx 
y è e v. (7.48) 

Then we have 
r 

v r + 
N

v : @ 
2
1 
N

v rr . (7.49) 
2N

We may use (7.49) to obtain successive approximations of the WKB solutions. 

Homework due next Monday (Oct 18, 04) : 
Chapter 7, 4a, 5b, 7b. 
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