
Singular Points of Ordinary Differential Equations 

Lecture Eight 
Irregular Singular Points of Ordinary 
Differential Equations 

Solutions expanded around an irregular singular point are distinctive in one aspect: they are 
usually in the form of an exponential function times a Frobenius series. Due to the factor of the 
exponential function, a solution near an irregular singular point behaves very differently from that 
near a regular singular point. It may blow up exponentially, or vanish exponentially, or oscillate 
wildly. 

Let us start with the discussion of irregular singular points with the simpler case of the first-order 
linear and homogeneous equation 

y r + pΩxæy : 0. (6.40) 

As we know, the solution of (6.40) is 

yΩxæ : ce?PΩxæ , (6.42) 

where 

PΩxæ : X pΩxædx 

with c a constant. If pΩxæ has a pole of order Ωk + 1æ at x : 0 and hence has the Laurent series 
expansion 

pΩxæ : bk+1 + ` + b
x 
1 + a0 + a1x2 + `, 

xk+1 

find the solution of (6.40). 
Answer 

We have 

PΩxæ : ? bk+1 + ` + b1 ln x. 
kxk 

Thus the solution of (6.40) is of the form 
bk+1 + `exp x?b1 MΩxæ,
kxk 

where MΩxæ is a Maclaurin series. Note that x?b1 MΩxæ is a Frobenius series. 
If pΩxæ has a pole of order Ωk + 1æ at x0 instead of at the origin, and if we are interested in the 

behavior of the solution near x0, then we make the change of variable 
X : x ? x0.

The solution near x0 is given by the one given above with x replaced by X.

We are now ready to discuss the second-order linear homogeneous differential equations (6.38)


with an irregular singular point. 
Let x0 be an irregular singular point of (6.38). If 

Ωx ? x0æk+1cΩxæ : c0 + c1Ωx ? x0æ + ` 

and 

Ωx ? x0æ2k+2dΩxæ : d0 + d1Ωx ? x0æ + `, 

are both convergent Taylor series, and if at least one of c0 and d0 are not zero, then x0 is called an 
irregular singular point of rank k. If the order of the pole of cΩxæ and that of dΩxæ at x0 are Ωk1 + 1æ 
and Ω2k2 + 2æ respectively, with k1 not equal to k2, then the rank k is equal to the greater of k1 and 
k2. 

Note that if k : 0, then x0 is a regular singular point of (6.38). 
We mention that, if x0 is an irregular singular point of rank k, where k is a positive integer, then 

the solutions of (6.38) are of the form 

yΩxæ : expøFΩxæ¿YΩxæ, (6.45) 

where 
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Ak?1 A1FΩxæ : Ak + 

Ωx ? x0æk?1 
+ ` x ? x0Ωx ? x0æk 

and 
sYΩxæ : > anΩx ? x0æn+ , a0 é 0, a?1 : a?2 : ` : 0 (6.46) 

is a Frobenius series. 
As a general remark, if we wish to find the behavior of the solution of (6.38) at very large values 

of x, we make the change of variable 

x : 1 .t 
When x is very large, t is very small. Indeed, x : K corresponds to t : 0. By making an expansion of 
the solution around t : 0 in the way we just outlined, we obtain an expansion around x : K. 
Keeping a few terms of this expansion is often a good approximation of the solution at very large 
values of x. 

The change of the independent variable from x to t is done with 
d 
dx 

: d 
dΩ 1 

t æ 
: ?t2 d 

dt 
, 

and 
d2 

dx2 : t2 d 
dt 

t2 d 
dt 

: t4 d2 

dt2 + 2t3 d 
dt 

. 

Thus (6.38) becomes 

d2y 
dt2 + 

2t ? cΩ 1 
t 

t2 

æ dy 
dt 

+ 
dΩ 1 

t 

t4 

æ 
y : 0. (6.54) 

We call x : K an ordinary point, a regular singular point, or an irregular singular point of rank k of 
eq. (6.38), respectively, if t : 0 is an ordinary point, a regular singular point, or an irregular singular 
point of rank k of (6.54), respectively. In particular, we see from (6.54) that the infinity is an 
irregular singular point of rank k if either dΩxæ blows up like x2k?2 or cΩxæ blows up like xk?1 as x goes 
to infinity. 

If the infinity is an irregular singular point of rank k, then the solution of (6.38) for very large x is 
of the form 

yΩxæ : expøAkxk + Ak?1xk?1 + ` + A1x¿YΩxæ, (6.55) 

where 

YΩxæ : > anx?n?s , a0 é 0, a?1 : a?2 : ` : 0, (6.56) 

which is easily deduced from (6.45) and (6.46) by identifying Ωx ? x0æ with t, or 1/x. Note that the 
terms in the series (6.56) are in decreasing powers of x, and hence the series is a useful 
approximation for x large. 

Problem for the Reader: 
Find the series solution of 

y rr + x?4y : 0 (6.57) 

which is useful for very small values of x. 
Answer 

The point x : 0 is an irregular singular point with rank 1. Thus the series solution near the origin 
is of the form 

A1y : exp YΩxæ, (6.58) x 

with 
sYΩxæ : > anxn+ , a0 é 0, a?1 : a?2 : ` : 0. (6.59) 

We substitute (6.58) into (6.57). We get 
2 + 1d2Y ? 2A1 dY + Ω 2A1 A1+ æY : 0. (6.60) 

dx2 x2 dx x3 x4 

The value of A1 is determined by requiring the most divergent term in the coefficient of Y in (6.60) 
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to vanish. There is, in eq. (6.60), a term in the coefficient of Y which is a fourth-order pole at the 
point of expansion x0 : 0. Thus we require 

2 + 1 : 0, 

or 

A1 

A1 : çi. 

Let us choose the root 

A1 : i. 

Then (6.60) becomes 

Ω d2 
? 2i d + 2i æY : 0. 

dx2 x2 dx x3 

One of the solutions can be obtained by inspection. We get 

YΩxæ : x. 

This result can also be obtained if we go through the grind to obtain the recurrence formula 
Ωn + s ? 1æΩn + s ? 2æan?1 : 2iΩn + s ? 1æan. 
From the recurrence formula with n : 0, we get 

a

s : 1.

Thus the recurrence formula is

nΩn ? 1æan?1 : 2inan.

Setting n : 1, we obtain from the recurrence formula that


1 : 0,

and hence a2 : a3 : 6 6 6 : 0. Therefore, the series solution for YΩxæ terminates after one term.


Thus we have obtained the closed form expression of one of the independent solutions of (6.57) as 
iy1Ωxæ : x exp .x 

Taking the complex conjugate y1Ωxæ, we get the second independent solution of (6.57) as 

? iy2Ωxæ : x exp .x 

Problem for the Reader:

Find the series solution of the Bessel equation


y rr + x?1y r + Ω1 ? p2/x2æy : 0 (6.61) 

which is useful for very large values of x. 
Answer 

We may read off the rank at infinity from the Bessel equation (6.61) directly, without changing 
the independent variable from x to t. 

As x goes to infinity, the coefficient of y goes to a constant, or x0. Therefore, according to this 
coefficient, 

2k ? 2 : 0, 
or 
k : 1.

The coefficient of y r is x?1. Thus, according to this coefficient,

k ? 1 : ?1,

or

k : 0.

The rank of the Bessel equation at x0 : K is the greater of the two, and is unity.

Thus we put


yΩxæ : expΩA1xæYΩxæ 

where 

YΩxæ : > anx?n?s , a0 : 1, a?1 : a?2 : ` : 0. 

The Bessel equation becomes 

ΩD2 + 2A1D + x?1D + A1 
2 + 1 + A1/x ? p2/x2æY : 0. 
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We require the sum of the most divergent terms in the coefficient of Y in the equation above vanish. 
As x î K, the coefficient of Y in the equation above is ΩA1 

2 + 1æ. Thus we get 

A1 : çi. 

This determines the two roots of A1. 
Take the root 

A1 : i. 

Then the equation for Y becomes 

Y rr + Ω2i + x?1æY r + Ωi/x ? p2/x2æY : 0. 

We have 

ΩD2 + x?1D ? p2/x2æYΩxæ : >øΩn + sæΩn + s + 1æ ? Ωn + sæ ? p2 ¿anx?n?s?2, 

and 

Ω2iD + i/xæYΩxæ : >ø?2iΩn + sæ + i¿anx?n?s?1. 

Thus we have 

2iΩn + s ? 1/2æan : øΩn + s ? 1æ2 ? p2 ¿an?1. 

Setting n : 0, we get 

s : 1/2. 

For n é 0, the recurrence formula is 
Ωn + p ? 1/2æΩn ? p ? 1/2æ an : 

2in 
an?1. (6.62) 

a

Thus we have 

1 <Ωn + p + 1/2æ<Ωn ? p + 1/2æ 
n : 

Ω2iæn n!<Ωp + 1/2æ<Ω?p + 1/2æ 
a0. 

Therefore, one of the series solution for the Bessel equation for very large values of x is 

y1Ωxæ : x?1/2 expΩixæ > 1 <Ωn + p + 1/2æ<Ωn ? p + 1/2æ . #
Ω2ixæn <Ωp + 1/2æ<Ω?p + 1/2æn! 

The other series solution for the Bessel equation for very large values of x is 
K 

y2Ωxæ : x?1/2 expΩ?ixæ > 1 <Ωn + p + 1/2æ<Ωn ? p + 1/2æ . (6.64) 
Ω?2ixæn <Ωp + 1/2æ<Ω?p + 1/2æn! 

n:0 

Equations (6.63) and (6.64) give the solutions of the Bessel equation useful when P x P is large. 
This is to be compared with the series solution (6.32) useful when P x P is small. Since JpΩxæ is a 
solution of the Bessel equation, it must be a linear superposition of y1 and y2. Thus we have 

JpΩxæ : cy1Ωxæ + c7y2Ωxæ.

The coefficient c cannot be determined with the present analysis, but we will be able to show in


Thus

c : e?iZΩ1/4+p/2æ 

2Z 
. 

Chapter 8 that 

JpΩxæ u Z
2 
x cosΩx ? Z/4 ? pZ/2æ, x ;; 1. 

The series (6.63) and (6.64) differ from the series (6.32) in one important aspect: the former are 
divergent for all values of x! This can be seen from (6.62), which shows that, when n is very large, 
the ratio an/an?1 goes to infinity. 

That these series are divergent does not imply that they are not useful for the purpose of 
approximation. Indeed, they are called asymptotic series and give very good approximations to the 
solutions when x is large if the number of terms is chosen appropriately. 

The classic example of an asymptotic series is 
e?t 

IΩxæ : XK 
dt, x N 0. (6.65) 

0 1 + tx 
We have 
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Thus we expect 

IΩ0æ : XK 
e?tdt : 1. 

0 

IΩxæ u 1, 

when x is small. 
To seek an approximation better than this, we approximate the factor Ω1 + txæ?1 in the integrand 

of IΩtæ by 
n1 u 1 ? tx + t2x2 + ` + Ω?txæ .

1 + tx 
Using this approximation for the integrand of IΩxæ, we get 

IΩxæ u XK 
e?tø1 ? tx + t2x2 + ` + Ω?txæn ¿dt 

0 

n: 1 ? x + 2!x2 + ` + n!Ω?xæ . (6.66) 

The first term of this series is unity, an approximation we have already obtained. However, we note 
that the series in (6.66) diverges for all values of x as we let n î K. 

Nevertheless, (6.66) is a useful formula for approximation, as we shall prove. We have 
n+11 : 1 ? tx + t2x2 + 6 6 6 +Ω?txæn + Ω?

1 
tx
+ 
æ
tx 

,
1 + tx 

which is exact. Thus we have 

IΩxæ : XK 
e?tø1 ? tx + t2x2 + ` + Ω?txæn ¿dt + Rn, (6.67) 

0 

where 
n+1 

e?t Ω?txæRn : XK 
dt. 

0 1 + tx 
Equation (6.67) is exact. This is to be compared with (6.66), which is obtained by dropping Rn. 

How big is the term dropped? We have 

P Rn Pí X
K 

e?tΩtxæn+1dt : xn+1Ωn + 1æ!. 
0 

Let x : 0.1. Then the sum of the first five terms of (6.66), which is of the order of unity, differs from 
the exact value by R4, which is estimated to be about one tenth of one percent. We may improve this 
approximation somewhat by taking more terms. But as the series eventually diverges, it is obviously 
not a great idea to be too enthused and take a large number of terms in (6.66). Where do we stop? 
Very roughly, we should stop when the upper bound of Rn no longer goes down as we increase n by 
unity. For x : 0.1, this happens when n : 10. 

If x : 0.01, and if we take one hundred terms in the series (6.57), the error is as small as 10? . 

Homework Problems due Wed next week ( Oct 13, 04) 
Chapter 6, problem8. 
Chapter 7, problem 1 and 2. 
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