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1 Introduction
A “waveguide” is a structure that allows waves to propagate along one (or more)
direction(s) while confining them in one or more other “transverse” directions.
These arise in many forms in many different wave equations, with a variety of
mechanisms for the transverse confinement: silica optical fibers, sound waves
propagating down hollow tubes, coaxial transmission lines, and so forth. One
commonplace confinement mechanism is known as “total internal reflection”
or “index guiding” in optics [1], where waves are trapped in a region (“core”)
of higher refractive index (e.g. the core of an optical fiber) surrounded by a
“cladding” of a lower index. It turns out that this mechanism is not specific
to optics, and the general principle is that waves can be trapped in a medium
where the wave speed (phase velocity) is slower than in the surrounding medium.
Moreover, it turns out that we can prove the existence of such localized solutions
quite generally—even in cases that we cannot solve analytically—using a “vari-
ational” proof that is closely related to proofs of localization (“bound states”)
in quantum mechanics (i.e., the Schrödinger equation) [2–4]. In these notes,
we demonstrate this approach in the context of a 2d scalar wave equation, but
closely related proofs can be applied to other wave equations (e.g. Maxwell’s
equations [5, 6]).

2 Review of scalar waves
In these notes, we consider the scalar wave equation:

u−Âu = c2 2 ∂2

∇ u = ,
∂t2

where the coefficient c(x) > 0, which has units of speed, is some function of
x and we have defined the linear operator Â = −c2∇2. It is straightforward
to show that Â is Hermitian (i.e. self-adjoint, ˆ ˆA = A∗, where ∗ denotes the
adjoint) and positive semidefinite under a variety of boundary conditions on

1



u (e.g. u or its normal derivative vanishes at the boundary of the domain)
with the inner product 〈u, v〉 =

´
uv¯ ūc2 (where denote complex conjugation), i.e.

〈 ˆu,Av〉 = 〈Âu, v〉 and 〈 ˆu,Au〉 =
´
|∇u|2 ≤ 0 for all1 u, v.

For reasonable c(x) we will have a spectral theorem,2 i.e. a complete basis
of eigenfunctions for Â, and to understand the solution of the wave equation it
is enough to understand the eigenfunctions3 ˆu(x) satisfying Au = λu. It is easy
to show that the self-adjointness means that λ will be real, and the positive-
semidefiniteness means that λ ≥ 0, so it is convenient to write λ = ω2 where ω
is real with units of frequency. Plugging this back into the wave equation, we
see that −Âu = −ω2u = ü and hence each eigensolution describes oscillating
modes u(x)e±iωt with (eigen)frequency ω. These are the “normal modes:” an-
other consequence of self-adjointness is that eigensolutions are orthogonal : given
Âu1 = ω2

1u and Âu 2
2 = ω 2

2u2 with ω2
1 1 =6 ω2 , it is easy to show that 〈u1, u2〉 = 0.

If c is a constant (homogeneous c), the eigensolutions yield the planewaves
u(x, t) = ei(k·x−ωt) where ω(k) = ±c|k|, in which case c is the magnitude of
both the phase velocity (ω/|k|) and the group velocity (|∇kω|): it is the speed
at which waves travel and information propagates. For the case of inhomo-
geneous c considered below, the solutions and hence the velocities are more
complicated, but we can still in some sense think of smaller-c regions as being
“slower” materials.

3 Waveguide eigenproblems
To define a waveguide, we will consider the 2d domain R2 formed by the xz
plane4 (or some subset X × R for X ⊆ R), where c(x) depends only on x and
not z. In this case, the translational symmetry implies5 that will have separable

1Or rather, for all u, v in the appropriate Sobolev space for this problem, which basically
means that we restrict ourselves to functions where these integrals are defined. In these notes,
I won’t worry about pinning down the precise function spaces.

2For finite-dimensional Hermitian operators, you always have a basis of eigenvectors (diag-
onalizability). For infinite-dimensional operators (i.e. operators on functions), one can con-
struct pathological counterexamples where this is not the case, but these are rarely relevant
to physical problems—the counterexamples typically exhibit solutions that oscillate infinitely
fast as they approach some point. So, physicists typically assume that all Hermitian problems
have a basis of eigenfunctions. A more rigorous approach can be found in any book on func-
tional analysis, e.g. Gohberg et al. [7], but rigorous treatment of non-constant coefficients c
is often quite limited.

3In an infinite domain, functional analysts would call some of these solutions “generalized”
eigenfunctions. e.g. if c = 1 on an infinite domain, the solutions are planewaves u = eik·x

for real vectors k (disallowing solutions that grow exponentially at infinity), but these are not
normalizable: 〈u, u〉 diverges, and u lives in a “rigged” Hilbert space rather than a Hilbert
space. I will gloss over this and similar distinctions.

4We use xz and not xy for easy generalization to 3d: we always let z denote the propaga-
tion direction (the direction with continuous translational symmetry) while x and y are the
transverse directions.

5The consequences of symmetry are a deep consequence of group representation theory [1,
8]: whenever a group of symmetry operations commutes with Â (the problem is “symmetrical”),
it follows that the eigenfunctions are partners of “irreducible representations” of the symmetry
group. For continuous translational symmetry in z, this leads to eikz dependence.
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eigensolutions of the form

u(x, z, t) = uk(x)ei(kz−ωt),

for real “propagation constants” k (sometimes denoted β), which correspond to
waves that are propagating in the z direction with phase velocity ω/k and group
velocity dω/dk, where the eigenfrequencies ω(k) are the “dispersion relation” and
satisfy a “reduced” eigenproblem:

Â 2
kuk = ω(k) uk

with
2

Âk = −ikz ˆe Aeikz = c2
(

∂− + k2

∂x2

)
.

That is, for each k we have a 1d eigenproblem for the “mode profile” uk(x). Note
that ˆ ˆAk = A∗k ≥ 0 is also self-adjoint positive semidefinite, like Â. Hence, for
each value of k the eigenfunctions uk are orthogonal: given Âkuk,1 = ω 2

1(k) uk,1
and Âkuk,2 = ω2(k)2uk,2 with ω1 6= ω2, it follows that 〈uk,1, uk,2〉 = 0, where
here we have the 1d inner product 〈u(x), v(x)〉 =

´
uv¯ dxc2 .

Waveguide modes (also called “guided” or “bound” modes) are solutions for
which uk is localized; at the very least so that |uk|2dx < ∞, and typically
uk(x) will decay at least exponentially fast with

´
|x|. To obtain such solutions,

we need some mechanism to trap waves. Obviously, guided modes will not occur
if c = constant in an infinite domain R2, since in that case uk will simply be
a sinusoid [yielding planewave solutions u = ei(k·x−ωt)]. The simplest way to
construct guided modes is to have “hard walls” in the x direction, such as a
finite domain x ∈ [0, L] with Dirichlet boundary conditions uk(0) = uk(L) = 0,
in which case c = constan√ t gives eigenfunctions uk(x) = sin(nπx/L) for n =
1, 2, . . . and ωn(k) = c (nπ/L)2 + k2. Physically, this corresponds to waves
propagating within a “hollow tube” (in 2d). Instead, in the next section we
will trap waves in an infinite domain by a “slow” region: a region of smaller c
surrounded by a region of larger c.

4 Slow-wave guiding
Consider a 2d domain R2 with

1
c x) =

{
c |x| < h/2

( ,
c0 |x| ≥ h/2

where c1 < c0. That is, there is a width-h strip of “slower” material running
along the z axis. The dispersion relation ω(k) of the eigensolutions of Âk for
this c are shown in Fig. 1(left), and can be divided into two categories:

• The light cone (so-called in optics [1]): a continuous spectrum ω ≥ c0|k|,
consisting of all of the solutions that can exist in the homogeneous c0
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Figure 1: Left: Dispersion relation ω(k) of all of the eigenvalues ω2 of Âk for a
width-h (h = 1) strip of “slow” material c1 = 0.5 surrounded by “fast” material
c0 = 1. The shaded region ω ≥ c0|k| is the “light cone,” the continuous spectrum
of all solutions that can propagate in the homogeneous c0 region infinitely far
from the strip, whereas the red curves are guided modes localized in the strip
(and exponentially decaying in c0). Right: Plot of three of the guided modes
uk(x) at k = 6 (corresponding to the dots in the dispersion relation at left).

medium infinitely far from the strip. Intuitively, if you are very far from
the strip, the solutions are just those of the homogeneous c0 medium:
planewaves u ikz i(k x+kz)

ke ≈ e ⊥ for any real k , with a continuum of⊥
frequencies ω = c0

√
k2 + k2 ≥ c0|k⊥ |.

• The guided modes: a discrete set of “bands” ωn(k) lying below the light
cone (≤ c0|k|), which are localized in the vicinity of the strip. In the c0
region, frequencies below the light cone correspond to purely imaginary
k =

√
⊥ ±i k2 − (ω/c0)2, and hence these solutions (shown at right in

Fig. 1) are exponentially decaying in c0.

Intuitively, decreasing c leads to a decrease of the eigenvalues of −c2∇2, so the
c1 < c0 region “pulls down” solutions from the light cone, and once a solution
falls below the light cone it is necessarily guided. This can be proved mathe-
matically in a couple of ways (aside from numerical demonstrations). First, this
particular 2d problem happens to be simple enough to be solvable analytically:
essentially, you write uk as a sine or cosine in the c1 region and as decaying
exponentials in the c0 regions, and then match the solutions at |x| = h/2 to
enforce continuity of uk and u′

k. After tedious algebra, this leads to a transcen-
dental equation that you can analyze to find k and ω. However, that approach,⊥
besides being somewhat messy, is quite limited to this specific c(x) in two di-
mensions. Instead, in the next section we will derive the existence of guided

4



modes without solving the PDE, but in a much more general setting (that can
even be extended to three dimensions).

4.1 Variational proof of slow-wave guiding
We want to show that the fundamental (lowest-ω) mode ω1(k) is < c0|k|, and
hence is guided (exponentially decaying in c0). To do this, we don’t actually
need to compute ω1, we only need to find an upper bound for ω1 and show
that this bound is < c0|k|. The key to finding an upper bound is the min–
max theorem, also known as the variational theorem: for any self-adjoint
operator Âk , it is easy to show [1,2] that the smallest eigenvalue ω2

1 minimizes
the Rayleigh quotient R{u} = 〈 ˆu,Aku〉/〈u, u〉 over all u(x), and in particular
that ω2

1 ≤ R{u} for any u(x). Hence, we just need to find some u(x) such that
R{u} < c20k

2 and it will follow that ω1 < c0|k|: that a guided mode exists.
Multiplying both sides of R{u

ˆ
} < c20k

2 by 〈u, u〉 and integrating the numer-
ator 〈u,Aku〉 once by parts, we obtain

ˆ ∞ (
2 2 2

)
2 2

ˆ ∞
c

|u 2

|u′| + k |u| dx < 0k
|

−∞ −∞
dx.

c2

Now, if we can find some function u(x) for which this inequality is true, we are
done. It turns out that there are many choices of u(x) that will work, but one
of the easiest is u(x) = e−|x|/L, where L is a free parameter that we can choose
to enforce the inequality. Before we do this, let us be more precise about c(x).
We could use this technique to analyze the specific piecewise-constant c(x) from
the previous section, but it turns out that we can prove localization for a much
wider range of c(x) functions. In particular, we write

1

c(x)2
=

1
+ ∆(x),

c20

so that ∆(x) > 0⇔ c(x) < c0. We will allow ∆(x) to be any function as long as
there is a localized “slow” (c < c0) region on average, as defined by the following
two conditions: ˆ ∞

∆(x) dx > 0 (slow on average),
−∞

ˆ ∞
|∆(x)| dx <∞ (c 6= c0is localized).

−∞

We will now show that these two conditions are sufficient to imply that ω1(k) <
c0|k| for all k 6= 0.

Plugging this 1/c2 into our desired inequality on u, we immediately see that
the k2|u g the
2

|2 terms cancel on both sides. Computin integral
´
|u′|2dx =

L2

´∞
0
e−2x/L = 1

L , we are left with:

1 ∞
< c2

L 0k
2

ˆ
∆(x) e−2|x|/Ldx.

−∞
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For any k 6= 0, this is true for a sufficiently large choice of L. To show this, it
suffices to show that the inequality holds in the limit L→∞. The limit of the
left-hand side is 0, while the limit of the right hand side is

2 2

ˆ ∞
2 x /L 2 2

ˆ ∞
c 2 /L

∞
lim x 2 2

0k ∆(x) e− | | dx = c0k ∆(x) lim e− | | dx = c0k
L→∞ −∞ −∞ L→∞

ˆ
∆(x) dx.

−∞

Interchanging limits and integration is not allowed in general, but it is okay
under various conditions on the integrand that one can look up in analysis
textbooks. In this case, it is okay because of something called “Lebesgue’s
dominated convergence theorem” [9].6 Thus, in the L→∞ limit, our inequality
becomes ∞

0 < c2 2
0k

ˆ
∆(x) dx,

−∞

which is true for k 6= 0 due to our assumption
´

∆ > 0. If the inequality holds
for L → ∞, then it must also hold for some sufficiently large (but finite) L.
Hence, there exists a u(x) such that ω1(k)2 ≤ R{u} < c20k

2 and hence we have
at least one guided mode with a frequency ω1 below the light cone. Q.E.D.

5 Generalizations
There are many wave-localization problems that can be subjected to a similar
analysis, such as waveguiding in Maxwell’s equations [5,6] or localized states of a
potential well (

´
V < 0,

´
|V | <∞) in the Schrödinger operator −∇2 +V (x) of

quantum mechanics [2]. For the Schrödinger operator −∇2+V (x), one similarly
wants to show |∇u|2 < − |u|2V for some trial function u in order to prove
that the eigenv

´
alue is negativ

´
e (hence localized if V → 0 for large |x|), so by

comparison we see that −∆ in the wave equation above is playing the role of a
“potential well.”

The fact that the proof in the previous section was so easy (at the level of
an undergraduate homework problem [2]), and would have worked for almost
any reasonable choice of u(x) where we have a parameter L to control the local-
ization length, is essentially the consequence of a scaling relationship. Slightly
rewritten, we wanted to show

´
|∇u|2´
|u|2

< c20k
2

´
|u|2∆

.´
|u|2

Suppose that ∆ 6= 0 only in some region of diameter h, and u = ψ(x/L) for
some square-integrable function ψ (so that L controls the lengthscale as above).
Then the left-hand side scales as 1/L2, while the right-hand side scales as h/L
(the fraction of |u|2 in the ∆ 6= 0 region). Therefore, it is obvious that the
inequality must hold for a sufficiently large L. In general, the consequence is that

6In particular, you can interchange limits and integration for f(x) when |f(x)| ≤ g(x)

for some g(x) such that
´
g(x) <∞. In this case |∆(x) e−2|x|/L

´
| ≤ |∆(x)| and

´
|∆| <∞ by

our assumption of a localized slow region.
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localization is easy in one dimension—even for an arbitrarily weak “potential
well” (small ∆ and/or small k2), one always has a localized eigenfunction, a
familiar theorem in quantum mechanics.

In higher dimensions, however, the same scaling comparison tells us that
matters are different. In d dimensions, the left-hand side still scales as 1/L2,
but the right-hand side scales as (h/L)d. This means that for d > 2 it is
not advantageous to have a large L, so weak localization does not occur. For
dimensions > 2, you must have a sufficiently strong “potential well” in order to
localize a solution, again a well-known fact in quantum mechanics but true in
other areas as well. For d = 2, both sides of the inequality scale in the same way
with L, which tells us that two dimensions is a borderline case that requires a
more delicate analysis.

In fact, it turns out that an arbitrarily weak potential well does produce a
localized eigenfunction in 2d wave equations, but the proof is quite tricky. The
first proof, in 1976, involved extremely sophisticated functional analysis [10].
Much simpler, variational-style proofs were discovered in the 1980s [3–5], but
involved more complicated trial functions like u(x) ∼ e−(|x|+1)α in the α →
0 limit, which are very tricky to integrate (in practice, one just bounds the
integrals). The analogous problem for waveguides is a 3d waveguide in which
the solutions are localized in two transverse dimensions (e.g. xy), and again it
turns out that there is indeed a guided mode for every k 6= 0, but the proofs
are again complicated, especially in the vectorial Maxwell wave equation and
for complicated media [5, 6]. Another interesting case is to prove localization
within a “gap” in the continuous spectrum of the surrounding medium (rather
than for ω1 below the infimum of the spectrum), which can happen when c0
is periodic rather than constant, and this has been done for the Schrödinger
operator with a related variational proof [4].
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