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0 Review
Suppose we have some vector space V of functions u(x) on a domain Ω, an inner product 〈u,v〉, and
a linear operator Â. [More specifically, V forms a Sobolev space, in that we require 〈u,Auˆ 〉 to be
finite.] Â is self-adjoint if 〈u,Avˆ 〉= 〈Auˆ ,v〉 for all u,v ∈V , in which case its eigenvalues λn are real
and its eigenfunctions un(x) can be chosen orthonormal. Â is positive definite (or semidefinite) if
〈u,Auˆ 〉 > 0 (or ≥ 0) for all u 6= 0, in which case its eigenvalues are > 0 (or ≥ 0); suppose that we
order them as 0 < λ1 ≤ λ2

ˆ
≤ ·· · .

Suppose that A is positive definite, so that N(Â) = {0} and Auˆ = f has a unique solution for
all f in some suitable space of functions C(Â). Then, for scalar-valued functions u and f , we can
typically write

u(x) = Â−1 f =
ˆ

x′∈Ω

G(x,x′) f (x′) , (1)

in terms of a Green’s function G(x,x′), where x′∈Ω
denotes integration over x′. In this note, we

don’t address how to find G, but instead ask what

´
properties it must have from the self-adjointness

and definiteness of Â. [This generalizes in a straightforward way to vector-valued u(x) and f(x), in
which case G(x,x′) is matrix-valued.]

1 Self-adjointness of Â−1 and reciprocity of G

We can show that (Â−1)∗ = (Â∗)−1, from which it follows that if Â = Â∗ (Â is self-adjoint) then
Â−1 is also self-adjoint. In particular, consider Â−1Â = 1: 〈u,v〉 = 〈u, Â−1Avˆ 〉 =
Â

〈(Â−1)∗u,Avˆ 〉 =
〈 ∗(Â−1)∗u,v〉, hence Â∗(Â−1)∗ = 1 and (Â−1)∗ = (Â∗)−1. And of course, we already knew that the
eigenvalues of Â−1 are λ−1

n and the eigenfunctions are un(x).
What are the consequences of self-adjointness for G? Suppose the u are scalar functions, and

that the inner product is of the form 〈u,v
1 1

〉 = (
Ω

wuv¯ for some weight w x) > 0. From the fact that
〈u, Â− v

´
〉= 〈Â− u,v〉, substituting equation (1), we must therefore have:

〈u, Â−1v〉=
¨

w(x)
x,x′∈Ω

u(x)G(x,x′)v(x′)

= 〈Â−1u,v〉

=
¨

x,x′∈Ω

w(x)G(x,x′)u(x′)v(x) =
¨

x,x′∈Ω

w(x′)u(x)G(x′,x)v(x′),

where in the last step we have interchanged/relabeled x↔ x′. Since this must be true for all u and v,
it follows that

w(x)G(x,x′) = w(x′)G(x′,x)

for all x,x′. This property of G (or its analogues in other systems) is sometimes called reciprocity.
In the common case where w = 1 and Â and G are real (so that the complex conjugation can be
omitted), it says that the effect at x from a source at x′ is the same as the effect at x′ from a source at
x.

1



There are many interesting consequences of reciprocity. For example, its analogue in linear
electrical circuits says that the current at one place created by a voltage at another is the same as if
the locations of the current and voltage are swapped. Or, for antennas, the analogous theorem says
that a given antenna works equally well as a transmitter or a receiver.

1.1 Example: Â =− d2
,d 2 0x on Ω = [ L]

For this simple example (where Â is self-adjoint under 〈u,v〉=
previously obtained a Green’s function,

´
uv¯ ), with Dirichlet boundaries, we

′

G(x,x′ =

{(
1− x

) L

)
x x < x′

(1− x
,

L )x′ x≥ x′

which obviously obeys the G(x,x′) = G(x′,x) reciprocity relation.

2 Positive-definiteness of Â−1 and positivity of G

Not only is Â−1 self-adjoint, but since its eigenvalues are the inverses λ−1
n of the eigenvalues of Â,

then if Â is positive-definite (λ 0) then Â−1 1
n > is also positive-definite (λn

− > 0). From another
perspective, if Auˆ = f , then positive-definiteness of Â means that 0 < 〈u,Auˆ 〉= 〈u, f 〉= 〈Â−1 f , f 〉=
〈 f 1, Â− f 〉 for u 6= 0⇔ f 6= 0, hence Â−1 is positive-definite. (And if Â is a PDE operator with
an ascending sequence of unbounded eigenvalues, then the eigenvalues of Â−1 are a descending
sequence λ

−1 1>1 λ2
− > · · ·> 0 that approaches 0 asymptotically from above.1)

If Â is a real operator (real u give real Auˆ ), then Â−1 should also be a real operator (real f
give real u = Â−1 f ). Furthermore, under fairly general conditions for real positive-definite (elliptic)
PDE operators Â, especially for second-derivative (“order 2”) operators, then one can often show
G(x,x′) > 0 (except of course for x or x′ at the boundaries, where G vanishes for Dirichlet condi-

tions).2 The analogous fact for matrices A is that if A is real-symmetric positive-definite and it has
off-diagonal entries ≤ 0 — like our −∇2 second-derivative matrices (recall the −1,2,−1 sequences
in the rows) and related finite-difference matrices — it is called a Stieltjes matrix, and such matrices
can be shown to have inverses with nonnegative entries.3

2.1 Example: Â =−∇2 with u|∂Ω = 0

Physically, the positive-definite problem −∇2u = f can be thought of as the displacement u in
response to an applied pressure f , where the Dirichlet boundary conditions correspond to a material
pinned at the edges. The Green’s function G(x,x′) is the limit of the displacement u in response
to a force concentrated at a single point x′. The Green’s function G(x,x′) for some example points
x′ is shown for a 1d domain Ω = [0,1] in figure 1(left) (a “stretched string”), and for a 2d domain
Ω = [−1,1]× [−1,1] in figure 1(right) (a “square drum”). As expected, G > 0 everywhere except
at the edges where it is zero: the whole string/membrane moves in the positive/upwards direction in
response to a positive/upwards force.

1Such Â−1 integral operators are typically what are called “compact” operators. Functional analysis books often prove
diagonalizability (a “spectral theorem”) for compact operators first and only later consider diagonalizability of PDE-like
operators by viewing them as the inverses of compact operators.

2See, for example, “Characterization of positive reproducing kernels. Application to Green’s functions,” by N. Aron-
szajn and K. T. Smith [Am. J. Mathematics, vol. 79, pp. 611–622 (1957), http://www.jstor.org/stable/2372564]. 
However, as usual there are pathological counter-examples.

3There are many books with “nonnegative matrices” in their titles that cover this fact, usually as a special case of a more
general class of something called “M matrices,” but I haven’t yet found an elementary presentation at an 18.06 level. Note
that the diagonal entries of a positive-definite matrix P are always positive, thanks to the fact that Pii = eT

i Pei > 0 where ei is
the unit vector in the i-th coordinate.
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Figure 1: Examples illustrating the positivity of the Green’s function G(x,x′) for a positive-definite
operator (−∇2 with Dirichlet boundaries). Left: a “stretched string” 1d domain [0,1]. Right: a
“stretched square drum” 2d domain [−1,1]× [−1,1].
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