18.303: Self-adjointness (reciprocity) and definiteness (positivity) in Green's functions

S. G. Johnson

October 11, 2011

0 Review

Suppose we have some vector space V of functions $u(\mathbf{x})$ on a domain Ω, an inner product $\langle u, v\rangle$, and a linear operator \hat{A}. [More specifically, V forms a Sobolev space, in that we require $\langle u, \hat{A} u\rangle$ to be finite.] \hat{A} is self-adjoint if $\langle u, \hat{A} v\rangle=\langle\hat{A} u, v\rangle$ for all $u, v \in V$, in which case its eigenvalues λ_{n} are real and its eigenfunctions $u_{n}(\mathbf{x})$ can be chosen orthonormal. \hat{A} is positive definite (or semidefinite) if $\langle u, \hat{A} u\rangle>0($ or $\geq 0)$ for all $u \neq 0$, in which case its eigenvalues are >0 (or ≥ 0); suppose that we order them as $0<\lambda_{1} \leq \lambda_{2} \leq \cdots$.

Suppose that \hat{A} is positive definite, so that $N(\hat{A})=\{0\}$ and $\hat{A} u=f$ has a unique solution for all f in some suitable space of functions $C(\hat{A})$. Then, for scalar-valued functions u and f, we can typically write

$$
\begin{equation*}
u(\mathbf{x})=\hat{A}^{-1} f=\int_{\mathbf{x}^{\prime} \in \Omega} G\left(\mathbf{x}, \mathbf{x}^{\prime}\right) f\left(\mathbf{x}^{\prime}\right) \tag{1}
\end{equation*}
$$

in terms of a Green's function $G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$, where $\int_{\mathbf{x}^{\prime} \in \Omega}$ denotes integration over \mathbf{x}^{\prime}. In this note, we don't address how to find G, but instead ask what properties it must have from the self-adjointness and definiteness of \hat{A}. [This generalizes in a straightforward way to vector-valued $\mathbf{u}(\mathbf{x})$ and $\mathbf{f}(\mathbf{x})$, in which case $G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is matrix-valued.]

1 Self-adjointness of \hat{A}^{-1} and reciprocity of G

We can show that $\left(\hat{A}^{-1}\right)^{*}=\left(\hat{A}^{*}\right)^{-1}$, from which it follows that if $\hat{A}=\hat{A}^{*}(\hat{A}$ is self-adjoint) then \hat{A}^{-1} is also self-adjoint. In particular, consider $\hat{A}^{-1} \hat{A}=1:\langle u, v\rangle=\left\langle u, \hat{A}^{-1} \hat{A} v\right\rangle=\left\langle\left(\hat{A}^{-1}\right)^{*} u, \hat{A} v\right\rangle=$ $\left\langle\hat{A}^{*}\left(\hat{A}^{-1}\right)^{*} u, v\right\rangle$, hence $\hat{A}^{*}\left(\hat{A}^{-1}\right)^{*}=1$ and $\left(\hat{A}^{-1}\right)^{*}=\left(\hat{A}^{*}\right)^{-1}$. And of course, we already knew that the eigenvalues of \hat{A}^{-1} are λ_{n}^{-1} and the eigenfunctions are $u_{n}(\mathbf{x})$.

What are the consequences of self-adjointness for G ? Suppose the u are scalar functions, and that the inner product is of the form $\langle u, v\rangle=\int_{\Omega} w \bar{u} v$ for some weight $w(\mathbf{x})>0$. From the fact that $\left\langle u, \hat{A}^{-1} v\right\rangle=\left\langle\hat{A}^{-1} u, v\right\rangle$, substituting equation (1), we must therefore have:

$$
\begin{aligned}
\left\langle u, \hat{A}^{-1} v\right\rangle & =\iint_{\mathbf{x}, \mathbf{x}^{\prime} \in \Omega} w(\mathbf{x}) \overline{u(\mathbf{x})} G\left(\mathbf{x}, \mathbf{x}^{\prime}\right) v\left(\mathbf{x}^{\prime}\right) \\
& =\left\langle\hat{A}^{-1} u, v\right\rangle \\
& =\iint_{\mathbf{x}, \mathbf{x}^{\prime} \in \Omega} w(\mathbf{x}) \overline{G\left(\mathbf{x}, \mathbf{x}^{\prime}\right) u\left(\mathbf{x}^{\prime}\right)} v(\mathbf{x})=\iint_{\mathbf{x}, \mathbf{x}^{\prime} \in \Omega} w\left(\mathbf{x}^{\prime}\right) \overline{u(\mathbf{x}) G\left(\mathbf{x}^{\prime}, \mathbf{x}\right)} v\left(\mathbf{x}^{\prime}\right),
\end{aligned}
$$

where in the last step we have interchanged/relabeled $\mathbf{x} \leftrightarrow \mathbf{x}^{\prime}$. Since this must be true for all u and v, it follows that

$$
w(\mathbf{x}) G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=w\left(\mathbf{x}^{\prime}\right) \overline{G\left(\mathbf{x}^{\prime}, \mathbf{x}\right)}
$$

for all $\mathbf{x}, \mathbf{x}^{\prime}$. This property of G (or its analogues in other systems) is sometimes called reciprocity. In the common case where $w=1$ and \hat{A} and G are real (so that the complex conjugation can be omitted), it says that the effect at \mathbf{x} from a source at \mathbf{x}^{\prime} is the same as the effect at \mathbf{x}^{\prime} from a source at \mathbf{x}.

There are many interesting consequences of reciprocity. For example, its analogue in linear electrical circuits says that the current at one place created by a voltage at another is the same as if the locations of the current and voltage are swapped. Or, for antennas, the analogous theorem says that a given antenna works equally well as a transmitter or a receiver.

1.1 Example: $\hat{A}=-\frac{d^{2}}{d x^{2}}$ on $\Omega=[0, L]$

For this simple example (where \hat{A} is self-adjoint under $\langle u, v\rangle=\int \bar{u} v$), with Dirichlet boundaries, we previously obtained a Green's function,

$$
G\left(x, x^{\prime}\right)= \begin{cases}\left(1-\frac{x^{\prime}}{L}\right) x & x<x^{\prime} \\ \left(1-\frac{x}{L}\right) x^{\prime} & x \geq x^{\prime}\end{cases}
$$

which obviously obeys the $G\left(x, x^{\prime}\right)=G\left(x^{\prime}, x\right)$ reciprocity relation.

2 Positive-definiteness of \hat{A}^{-1} and positivity of G

Not only is \hat{A}^{-1} self-adjoint, but since its eigenvalues are the inverses λ_{n}^{-1} of the eigenvalues of \hat{A}, then if \hat{A} is positive-definite $\left(\lambda_{n}>0\right)$ then \hat{A}^{-1} is also positive-definite $\left(\lambda_{n}^{-1}>0\right)$. From another perspective, if $\hat{A} u=f$, then positive-definiteness of \hat{A} means that $0<\langle u, \hat{A} u\rangle=\langle u, f\rangle=\left\langle\hat{A}^{-1} f, f\right\rangle=$ $\left\langle f, \hat{A}^{-1} f\right\rangle$ for $u \neq 0 \Leftrightarrow f \neq 0$, hence \hat{A}^{-1} is positive-definite. (And if \hat{A} is a PDE operator with an ascending sequence of unbounded eigenvalues, then the eigenvalues of \hat{A}^{-1} are a descending sequence $\lambda_{1}^{-1}>\lambda_{2}^{-1}>\cdots>0$ that approaches 0 asymptotically from above. $\frac{1}{\text {) }}$)

If \hat{A} is a real operator (real u give real $\hat{A} u$), then \hat{A}^{-1} should also be a real operator (real f give real $u=\hat{A}^{-1} f$). Furthermore, under fairly general conditions for real positive-definite (elliptic) PDE operators \hat{A}, especially for second-derivative ("order 2") operators, then one can often show $G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)>0$ (except of course for \mathbf{x} or \mathbf{x}^{\prime} at the boundaries, where G vanishes for Dirichlet conditions). $\underset{\sim}{2}$ The analogous fact for matrices A is that if A is real-symmetric positive-definite and it has off-diagonal entries $\leq 0-$ like our $-\nabla^{2}$ second-derivative matrices (recall the $-1,2,-1$ sequences in the rows) and related finite-difference matrices - it is called a Stieltjes matrix, and such matrices can be shown to have inverses with nonnegative entries. $-\frac{3}{-}$

2.1 Example: $\hat{A}=-\nabla^{2}$ with $\left.u\right|_{\partial \Omega}=0$

Physically, the positive-definite problem $-\nabla^{2} u=f$ can be thought of as the displacement u in response to an applied pressure f, where the Dirichlet boundary conditions correspond to a material pinned at the edges. The Green's function $G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is the limit of the displacement u in response to a force concentrated at a single point \mathbf{x}^{\prime}. The Green's function $G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ for some example points \mathbf{x}^{\prime} is shown for a 1 d domain $\Omega=[0,1]$ in figure 1 (left) (a "stretched string"), and for a 2 d domain $\Omega=[-1,1] \times[-1,1]$ in figure 1(right) (a "square drum"). As expected, $G>0$ everywhere except at the edges where it is zero: the whole string/membrane moves in the positive/upwards direction in response to a positive/upwards force.

[^0]

Figure 1: Examples illustrating the positivity of the Green's function $G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ for a positive-definite operator ($-\nabla^{2}$ with Dirichlet boundaries). Left: a "stretched string" 1d domain $[0,1]$. Right: a "stretched square drum" 2 d domain $[-1,1] \times[-1,1]$.

MIT OpenCourseWare
http://ocw.mit.edu

18.303 Linear Partial Differential Equations: Analysis and Numerics

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Such \hat{A}^{-1} integral operators are typically what are called "compact" operators. Functional analysis books often prove diagonalizability (a "spectral theorem") for compact operators first and only later consider diagonalizability of PDE-like operators by viewing them as the inverses of compact operators.
 ${ }^{2}$ See, for example, "Characterization of positive reproducing kernels. Application to Green's functions," by N. Aronszajn and K. T. Smith [Am. J. Mathematics, vol. 79, pp. 611-622 (1957), http://www.jstor.org/stable/2372564]. However, as usual there are pathological counter-examples.
 ${ }^{3}$ There are many books with "nonnegative matrices" in their titles that cover this fact, usually as a special case of a more general class of something called "M matrices," but I haven't yet found an elementary presentation at an 18.06 level. Note that the diagonal entries of a positive-definite matrix P are always positive, thanks to the fact that $P_{i i}=\mathbf{e}_{i}^{T} P \mathbf{e}_{i}>0$ where \mathbf{e}_{i} is the unit vector in the i-th coordinate.

