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Lecture 22 

Von Neumann analysis. The idea of Von Neumann analysis is to analyze the eigenvalues of the 
space discretization, A, in a simple case that can be solved analytically: ∞ space and constant 
coefficients. In this case the eigensolutions will be sinusoids (Fourier modes), which are most 
conveniently written as complex exponentials.  

In particular, considered Â=d2/dx2 in one dimension, discretized by the usual center difference. 
We try a solution um=eikm, and show that it is indeed an eigenvector (with infinitely many 
components in ∞ space!) of the discretized second derivative. (Briefly reviewed properties of 
complex exponentials and the equivalence to sines and cosines by Euler's identity.) Showed that 
the corresponding eigenvalues are λ(k)=−4 sin2(k/2) / Δx2. Hence, the maximum |λ| is for k=π (a 
solution that oscillates with every grid point).  

Applying the conditional stability result from last lecture for forward-difference timestepping, 
we find Δt<Δx2/2. This is necessary and sufficient for stability in the ∞-space case, because any 
(polynomially bounded) initial condition can be written as a sum of these eikm functions. In fact, 
this is a kind of reverse Fourier series, a discrete-"time" Fourier transform (DTFT, although here 
it is space not time). Reviewed how Fourier series can be written in terms of complex 
exponentials rather than sines and cosines. Noted that k and k+2π give equivalent solutions: this 
is called aliasing, and means that we only need to consider k in [-π,π].  

When we have boundaries, inhomogeneities, etcetera, then it is usually too hard to compute the 
eigenvalues exactly; in this case Von Neumann analysis usually gives us at best a necessary 
condition for stability, but not a sufficient condition. In practice, though, it works very well, 
although usually we err on the conservative side and make Δt a little bit smaller than the Von 
Neumann bound might strictly request.  

Similarly, analyzed the 2d heat equation with center differences in space and forward differences 
in time, and showed that the maximum Δt is decreased by a factor of 2. In general, it is decreased 
proportional to the number of dimensions.  

The important consequence of this is: when you refine the discretization in space (decreasing 
Δx), you must also refine the discretization in time (decreasing Δt) in an explicit scheme (like 
forward differences in time).  

New subject: Wave equations. Although we originally wrote the wave equation as a second 
derivative in time, in order to think about time evolution (either numerically or analytically) it is 
nicer to write it as a first-order derivative into time. The most obvious way to do this is to 
introduce a new variable v=∂u/∂t, but this turns out to lead to a somewhat unsymmetrical system 
of equations that is hard to analyze.  

Instead, we will look at the scalar wave equation ∇2u=∂2u/∂t2 in a new way. We will introduct a 
new vector-valued unknown v, defined by ∂v/∂t=∇u and ∂u/∂t=∇⋅v; showed that this is 
equivalent to ∇2u=∂2u/∂t2. This leads to a new equation of the form ∂w/∂t=Âw, where w=(u;v) 
and Â is the 2×2operator Â=(0,∇⋅;∇,0)=(0,div;grad;0). Now the problem looks superficially like 
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the heat/diffusion equation: it is first-order in time, with some new operator Â. But this Â is very 
different from the old Â=∇2! In fact, we will see that this Â gives Â*=-Â: it is anti-Hermitian, 
and from this stems many of the important properties of wave equations. 

Further reading: See for example chapter 6 of the Strang book for a typical textbook treatment 
of Von Neumann analysis. Something I dislike about this and many textbooks is that it does 
Von Neumann analysis right away. I prefer considering the dependence of Δt on the eigenvalues 
of A in general first (where things are both simpler and more general than diving into a specific 
discretization), and only then finding the eigenvalues of A in the Von Neumann case where we 
can solve for them exactly.
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