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Lecture 21 

New topic: Time-stepping and stability. Before, we turned operator equations Âu=f into matrix 
equations Au=f by discretizing in space. Now, we want to turn time-dependent operator 
equations Âu=f+∂u/∂t into discrete equations in both time and space. This will involve a new 
concern: stability.  

Began with a trivial example of an operator Â=a, a single number a<0, which for f=0 gives the 
ODE du/dt=au, and has the exponentially decaying (for a<0) solution u(t)=u(0)eat. Now we will 
discretize u(t) in time by u(nΔt)≈un — we will always use superscripts to denote the timestep n. 
Approximating the time derivative by a forward difference yields un+1≈(1+aΔt)un=(1+aΔt)n+1u0. 
Even though the exact ODE has decaying solutions, this discretization may have exponentially

growing solutions unless Δt<2/|a|: the discretization is only conditionally stable. In contrast, a 
backward difference yields un+1≈(1-aΔt)-1un=(1+aΔt)-1-nu0, which is always exponentially 
decaying for a<0: the scheme is unconditionally stable.  

For a more general operator Â, we proceed conceptually in two steps. First, we discretize in 
space only to yield a system of ODEs Au=∂u/∂t for a matrix A (e.g. by finite differences in 
space). Then we discretize in time and ask what happens to the eigenvectors of A. Focused on 
the case where A (and Â) are self-adjoint and negative-definite (negative eigenvalues λ<0), as 
for the heat equation (Â=∇2) with Dirichlet boundaries. In this case, showed that forward 
differences give an explicit timestep un+1≈(1+AΔt)un and are conditionally stable: we must have 
Δt<2/|λ|. In contrast, backward differences give an implicit timestep un+1≈(1-AΔt)-1un where we 
must solve a linear system at each step, but are unconditionally stable (decaying for any Δt).  

Some definitions: 

 Âu=∂u/∂t is well posed if the solution u(x,t) is finite for any finite t and for any initial
condition u(x,0). (Note that PDEs with diverging solutions can still be well-posed, as long as they are
finite at finite times, even if they are exponentially large.)

 A discretization is consistent if the discretization goes to Âu=∂u/∂t as Δx and Δt → 0.
o If the difference between the discrete equations and Âu=∂u/∂t, the local

truncation error, goes to zero as Δxa and as Δtb, then we say the scheme is "a-th
order in space and b-th order in time."

 A discretization is stable if ut/Δt≈u(x,t) does not blow up as Δt → 0 and Δx → 0.
(Informally, we often say it is "stable" if the solution does not blow up for any Δt, but a more precise
definition has to take into account that the original PDE may have solutions that blow up as t→∞.)

o it is conditionally stable if it is stable only when Δt has a certain relationship to
the spatial discretization A, and in particular this usually means that Δt is
constrained by some relationship with Δx.

o it is unconditionally stable if it is stable for all Δt independent of Δx or A (or at
least as long as A has some property like negative-definiteness).

 A discretization is convergent if ut/Δt→u(x,t) as Δx, Δt → 0.

A very important result (stated here without proof) is the Lax equivalence theorem: for any 
consistent discretization of a well-posed linear initial-value problem, stability implies

convergence and vice versa. If it is unstable, then it is obvious that it cannot converge: the 
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discretization blows up but the real solution doesn't. Less obvious is the fact that if it does not 

blow up, it must converge.  

The Lax theorem is very reassuring, because it turns out that it is quite difficult to prove stability 
in general (we usually prove necessary but not sufficient conditions in conditionally stable 
schemes), but if you run it and it doesn't blow up, you know it must be converging to the correct 
result.  

The tricky case to analyze is that of conditionally stable schemes. We need to relate the 
eigenvalues of A to Δx in some way to obtain a useful condition on Δt.  

For explicit timestepping of the heat/diffusion equation with forward differences, Δt is 
proportional to Δx2, so even though the discretization is second-order in space (errors ~ Δx2) and 
first-order in time (errors ~ Δt), the time and space discretization errors are comparable (or at 
least proportional).  

On the other hand, for implicit timestepping with backward differences, Δt is independent of Δx, 
so the first-order accuracy in time can really limit us. Instead, presented a second-order scheme 
in time by considering (un+1-un)/Δt to be a center difference around step n+0.5 [t=(n+0.5)Δt]. In 
this case, we evaluate the right-hand side Au at n+0.5 by averaging: A(un+1+u

n)/2. This gives a 
Crank-Nicolson scheme: un+1=(1-AΔt/2)-1(1+AΔt/2)un. This is an implicit scheme, but is 
second-order accurate in both space and time (assuming a 2nd-order A in space). Showed that it 
is unconditionally stable if A is negative-definite.  

For conditionally stable schemes, we need the eigenvalues of A. Gave a crude argument that the 
biggest |λ| for ∇2 and similar operators is proportional to Δx2, based on the fact that the solution 
cannot oscillate faster than the grid. To do better than this, we need to consider simplified cases 
that we can analyze analytically. 
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