
Lecture 18 

In the image method, the "extra source" is ostensibly not on the boundary, it is on the other side 
of the boundary. However, we can transform it to what we want by the following trick: consider 
the function u(x) in Ω=R3 that equals (1/|x-x'| - 1/|x-x''|)/4π [the method-of-images solution] for 
z>0 and u(x)=0 for z<0. What right-hand-side does -∇2u give? In z>0 -∇2u gives δ(x-x') as 
before, and for z<0 -∇2u gives zero. At z=0, however, there is a slope discontinuity in (1/|x-x'| - 
1/|x-x''|)/4π, which means that -∇2u also gives a δ(z) term: δ(z) σ(x,y) for a σ(x,y) given by the 
amplitude of the slope discontinuity.  

What does this mean? Our solution u(x) is due to the sum of a point source at x' and sources at

the interface (z=0). Worked out what these sources σ(x,y) are. Physically, in the electrostatics 
example they correspond to a surface charge density on the surface of a conductor. Why are 
these sources there? They are there to cancel the effect of the source at x' for z<0, enforcing the 
boundary condition u=0 at z=0.  

More generally, we can do this for any interface dΩ: we can write the solution from a point 
source δ(x-x') in Ω as the sum of the solution from that point source plus an integral of unknown

point sources σ(x') for points x' the boundary dΩ. Formally, we determine σ(x') by requiring u(x) 
to satisy the boundary condition at dΩ, which gives a surface integral equation (SIE) (of the 
"first kind") for σ(x'). Numerically, we discretize the surface in some way to get a finite number 
of unknowns approximating σ(x'), leading to an SIE numerical method.  

SIE methods (most commonly the "boundary element method", BEM) are very powerful in 
several ways. Because they only have unknowns on the boundaries (not everywhere in space like 
in a PDE method like finite differences), they can greatly reduce the number of unknowns: they 
handle the homogeneous regions analytically. They can handle infinite space (e.g. a cylinder 
surrounded by infinite space as in the pset) analytically, with no artificial truncation. Done 
properly, the matrices can have very nice properties. There are also some difficulties. SIE 
methods are not so efficient for problems that are not mostly homogeneous, especially 
continuously-varying media, and nonlinear or time-dependent problems are also difficult. 
Because the empty-space Green's function (1/4π|x-x'| in 3d) blows up for nearby points, there are 
lots of tricky singularities that must be dealt with carefully in setting up SIE methods. 
Furthermore, because you have long-range interactions (every surface point interacts with every 
other point via the Green's function), the matrices are dense, not sparse. That means that 
developing fast solvers for large problems is tricky; remarkably, there are ways to do this (most 
famously the pioneering fast multipole method invented in 1985), but implementing them is not 
for the timid. Worse, the singularity-handling and fast-solver techniques depend heavily on the 
specific Green's function of empty space; for example, changing from 3d (1/|x-x'|) to 2d (ln|x-x'|) 
problems requires a completely different implementation, although the concepts are similar. 

Further reading: There are many books on integral-equation methods, e.g. Boundary Integral 
Equation Methods for Solids and Fluids by Bonnet is a reasonably general introduction.

http://en.wikipedia.org/wiki/Fast_multipole_method
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