Lecture 11

(Finished discussion of Neumann from previous lecture: mass flux, conservation of mass in the diffusion equation, and other conservation laws.)

2d finite-difference discretizations: discretized the 2d Laplacian operator ∇^{2} in an $L_{x} \times L_{y}$ box with $N_{x} \times N_{y}$ points, for Dirichlet (0) boundaries, so that $u(m \Delta x, n \Delta y)$ is approximated by $N_{x} N_{y}$ degrees of freedom $u_{m, n}$. Showed that simply applying the $1 d$ center-difference rule along x and y results in a (famous) " 5 -point stencil" approximation for $-\nabla^{2}$ in which the Laplacian at ($\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$) depends on u at ($\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$) and the 4 nearest-neighbor points.

In order to express this as a matrix A, however, we need to "flatten" the $2 d$ grid of points $u_{n x, n y}$ into a single column vector \mathbf{u} with $\mathrm{N}_{\mathrm{x}} \mathrm{N}_{\mathrm{y}}$ components. There are multiple ways to do this, but a standard and easy scheme is the "column-major" approach in which \mathbf{u} is formed from the contiguous columns (x) $\mathrm{u}_{\mathrm{nx}, \text { : }}$ concatenated in sequence. (This is the approach used internally within Matlab to store matrices.)

Given this, we then see how to form $\partial^{2} / \partial x^{2}$ by operating one N_{x}-column at a time, using the the $N_{x} \times N_{x}$ discrete 1d Laplacian $A_{x}\left(=-D_{x}{ }^{T} D_{x}\right)$. The $\partial^{2} / \partial x^{2}$ matrix is simply a matrix with A_{x} along the diagonal N_{y} times, which differentiates each N_{x}-column block by block. The $\partial^{2} / \partial y^{2}$ matrix is a little tricker, but if we think of operating on whole columns then we see that it is just the A_{y} matrix with the entries "multiplied" by $\mathrm{N}_{\mathrm{x}} \times \mathrm{N}_{\mathrm{x}}$ identity matrices I_{x}.

In order to have a convenient way to express this, we use the Kronecker product notation $\mathrm{A} \otimes \mathrm{B}$ [kron(A,B) in Matlab], which multiplies the entries of A by the matrix B to create a matrix of matrices. In this notation, $A=I_{y} \otimes A_{x}+A_{y} \otimes I_{x}$.

Using this machinery, constructed A for $N_{x}=10$ and $N_{y}=15$ for $L_{x}=1$ and $L_{y}=1.5$ in Julia. Visualized the pattern of nonzero entries with spy. Solved for the eigenfunctions, and plotted a few; to convert a column vector \mathbf{u} back into a $\overline{2 d}$ matrix, used reshape $\left(\mathbf{u}, \mathrm{N}_{\mathrm{x}}, \mathrm{N}_{\mathrm{y}}\right)$, and plotted in 3d with the surf command. The first few eigenfunctions can be seen to roughly match the $\sin \left(n_{x} \pi x / L_{x}\right) \sin \left(n_{y} \pi x / L_{y}\right)$ functions we expect from separation of variables. However, $\mathrm{N}_{\mathrm{x}}=10$, $\mathrm{N}_{\mathrm{y}}=15$ is rather coarse, too coarse a discretization to have a really nice (or accurate) picture of the solutions.

In order to increase N_{x} and N_{y}, however, we have a problem. If the problem has $\mathrm{N}=\mathrm{N}_{\mathrm{x}} \mathrm{N}_{\mathrm{y}}$ degrees of freedom, we need to store N^{2} numbers ($8 \mathrm{~N}^{2}$ bytes) just to store the matrix A, and even just solving $\mathrm{Ax}=\mathrm{b}$ by Gaussian elimination takes about N^{3} arithmetic operations. Worked through a few numbers to see that even $\mathrm{N}_{\mathrm{x}}=\mathrm{N}_{\mathrm{y}}=100$ would have us waiting for 20 minutes and needing a GB of storage, while 3 d grids (e.g. $100 \times 100 \times 100$) seem completely out of reach. The saving grace, however, is sparsity: the matrix is mostly zero (and in fact the 5 -point stencil A has $<5 \mathrm{~N}$ nonzero entries). This means that, first, you can store only the nonzero entries, greatly reducing storage. Second, it turns out there are ways to exploit the sparsity to solve $\mathrm{Ax}=\mathrm{b}$ much more quickly, and there are also quick ways to find a few of the eigenvalues and eigenvectors.

In Julia, you exploit sparsity by using the sparse command and friends to create sparse matrice. Once you have a sparse matrix, Matlab automatically uses algorithms to exploit sparsity if you solve $\mathrm{Ax}=\mathrm{b}$ by $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$ and use the eigs function to find a few eigenvalues (instead of eig).

Starting with the ∇^{2} operator on a square grid, showed how we can convert to any other Ω shape with Dirichlet boundaries just by taking a subset of the rows/cols (as in problem 2 of pset 5). Recovered the Bessel solutions for a circular domain.

Further reading: Section 3.5 of the Strang book on 2d finite differences, section 7.1 on sparsity. See, for example min-max theorem in Wikipedia, although this presentation is rather formal. Unfortunately, most of the discussion you will find of this principle online and in textbooks is either (a) full of formal functional analysis or (b) specific to quantum mechanics [where the operator is $A=-\nabla^{2}+V$ for some "potential-energy" function $V(x)$].

MIT OpenCourseWare
http://ocw.mit.edu

18.303 Linear Partial Differential Equations: Analysis and Numerics

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

