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Lecture 10 

(Finished asymptotics of Bessel functions from previous lecture notes.) 

Discussed boundary conditions more generally than we have done in the past. Up to now, we 
have mostly considered u=0 (Dirichlet) or n⋅∇u=0 (Neumann) on the boundary, and mostly the 
former.  

More generally, we can consider "general Dirichlet" and "general Neumann" boundary 
conditions, where either the values u(x) or the normal derivatives n⋅∇u are some given function 
g(x,t) on the boundary. (For example, general Dirichlet boundary conditions arise for a drum 
head where the edges are not held flat, and you may even be warping the edges as a function of 
time.) If g≠0, these functions u do not form a vector space because they do not include u=0, so 
we must transform the problem somehow to get back to linear algebra.  

For general Dirichlet, one simple approach is to write u=v+g, where our new unknown v has 
zero-Dirichlet boundaries (similar to pset 1). Showed how this transforms e.g. a wave equation 
Âu=∂2u/∂t2-f(x,t) into wave equation in v but with an additional "force" term modifying f: 
Âv=∂2v/∂t2-[f+Âg-∂2g/∂t2]. For example, considered the steady-state 1d version of this problem 
d2u/dx2=0 (Laplace's equation) with u(0)=a, u(L)=b boundaries and showed that the solution is a 
straight line, which is physically obvious for a string stretched from (0,a) to (L,b).  

Intuitively, this makes a certain amount of sense: warping the boundary corresponds to an 
external force. But intuitively, the "physical" boundary force is only applied at the boundary, not 
everywhere in Ω as it is for a general g(x) above. It turns out that we can do this, too. It is easier 
to see this in the discrete case, for the same 1d problem as above. In this case, showed that we 
obtained the same Dirichlet A matrix as we do for 0 boundary conditions, while the (a,b) 
boundary conditions just turned into terms added to the right hand side, but only in the first and 
last rows: an "external force" applied at the boundaries. The PDE version of this technique 
involves delta functions, which we aren't prepared to handle yet. (In fact, this generalizes to cases 
where we want to specify jumps and other discontinuities of u in the interior of Ω as well, in 
which case one can again use new surface-localized terms on the right-hand-side and it is 
sometimes called an "immersed boundary" or "imbedded boundary" method, especially in fluid 
mechanics.)  

To better understand how Neumann boundary conditions arise, we have to better understand the 
meaning of ∇u. Considered the case of a diffusion equation, where u=mass/volume of some 
solute, and ∇⋅c∇u=∂u/∂t. The total mass M within some volume V is just ∫Vu, and showed by 
applying the divergence theorem we obtain dM/dt equal to a surface integral of c∇u. Since 
dM/dt>0 when mass is flowing in to the volume, this means that -c∇u is a mass "flux" vector 
(mass/time⋅area).  

If we have diffusion in a closed container, so that no mass can flow in or out of Ω, we then 
immediately see that we should apply (0) Neumann boundary conditions. Furthmore, total mass 
= ∫Ωu is conserved (constant in time) for any solution u.  
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More generally, for any equation Âu=∂u/∂t, showed that we obtain a conservation law 
∂/∂t ⟨v,u⟩=0 for any v(x) in the left null space N(Â*).  

For the case of diffusion with Neumann boundary conditions, reviewed the fact that Â=Â* but Â 
is only negative semidefinite: N(Â)=N(Â*) contains any constant function, and is spanned by 
v(x)=1. Hence ⟨1,u⟩ is conserved. i.e. total mass, or total heat, or average temperature, is 
conserved in a closed/insulated Ω.  

Another example of a (0) Neumann boundary condition arises when we are considering u(x) that 
are mirror-symmetric (even) around some mirror plane, which is equivalent to imposing a 
Neumann boundary condition on the mirror plane. (Similar, antisymmetric/odd symmetry is 
equivalent to a zero Dirichlet boundary.) Another example is a stretched string where one end 
can slide freely up and down a rod with no friction: that end has a Neumann condition.  

There are many other possible boundary conditions, of course. The most complicated ones can 
arise for PDEs with multiple unknowns (e.g. pressure, temperature, velocity, ...), in which case 
the boundary conditions may be equations relating several different unknowns or their 
derivatives.  

One can also have nonlocal boundary conditions, in which u at one point on ∂Ω is related to u at 
a different point. The most common example of this are periodic boundary conditions. e.g. 
considered Â=d2/dx2 on [0,L] for u(0)=u(L). Showed that Â is still self-adjoint, but not because 
the boundary terms are individually zero, but rather because the x=0 and x=L boundary terms 
cancel. The eigenfunctions are now sines and cosines of 2πnx/L, and give a general Fourier 
series (not just a sine or cosine series)! Also, Â is now negative semidefinite because constant u 
are allowed. Hence, for example, diffusion on a periodic domain still conserves total mass, 
because any mass that exits one side comes back in through the other side. 

Further reading: The u=v+g trick is closely related to the standard proof of the uniqueness of 
solutions to Laplace's/Poisson's equation with general Dirichlet boundaries (google "Laplace 
uniqueness" or "Poisson uniqueness", e.g. this page). The trick of moving boundary conditions 
over to the right-hand side is so obvious for finite-difference methods that it hardly has a name, 
but it is often commented on explicitly for finite-element methods where things are less obvious 
(e.g. section 3.6 of the book). There is a review of immersed boundary methods by Mittal and 
Iaccarino that is fairly readable, but oriented mainly towards fluid mechanics. Periodic domains 
arise in many cases, the most obvious being equations on a torus (e.g. waves on a membrane 
that loops back to itself, diffusion in a circular tube, or masses and springs connected into a 
ring). They also arise for systems that repeat periodically, e.g. a periodic crystal in solid-state 
physics, in which case you can write the solutions as Bloch waves of the form u(x)=uk(x)eik . x 
where uk is a periodic function that solves a PDE with periodic boundary conditions (and 
plotting the eigenvalues as a function of k gives a band structure).

http://www-solar.mcs.st-and.ac.uk/~andy/LectureNotes/Fundamentals1/node52.html
www.stanford.edu/group/uq/pdfs/journals/annurev_05.pdf
http://en.wikipedia.org/wiki/Bloch_wave
http://en.wikipedia.org/wiki/Electronic_band_structure
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