
Lecture 1 

General overview of what a PDE is and why they are important. Discussed examples of some 
typical and important PDEs (see handout, page 1). With non-constant coefficients (the most 
common case in real-world physics and engineering), even the simplest PDEs are rarely solvable 
by hand; even with constant coefficients, only a relative handful of cases are solvable, usually 
high-symmetry cases (spheres, cylinders, etc.) solvable. Therefore, although we will solve a few 
simple cases by hand in 18.303, the emphasis will instead be on two things: learning to think 
about PDEs by recognizing how their structure relates to concepts from finite-dimensional linear 
algebra (matrices), and learning to approximate PDEs by actual matrices in order to solve them 
on computers.  

Went through 2nd page of handout, comparing a number of concepts in finite-dimensional linear 
algebra (ala 18.06) with linear PDEs (18.303). The things in the "18.06" column of the handout 
should already be familiar to you (although you may need to review a bit if it's been a while 
since you took 18.06)—this is the kind of thing I care about from 18.06 for this course, not how 
good you are at Gaussian elimination or solving 2×2 eigenproblems by hand. The things in the 
"18.303" column are perhaps unfamiliar to you, and some of the relationships may not be clear at 
all: what is the dot product of two functions, or the transpose of a derivative, or the inverse of a 
derivative operator? Unraveling and elucidating these relationships will occupy a large part of 
this course.  

Covered the concept of nondimensionalization: rescaling the units so that dimensionful 
constants and other odd numbers disappear, making as many things "1" as possible. Gave an 
example of a heat equation κ∇2T = ∂T/∂t in an L×L box in SI units, where we have a thermal 
conductivity κ in m2/s. By rescaling the spatial coordinates to x/L and y/L, and rescaling the time 
coordinate to κt/L2, we obtained a simplified equation of the form ∇2T = ∂T/∂t in a 1×1 box. Not 
only does this simplify the equations, but it can also improve our understanding: by rescaling 
with characteristic times and distances, we are left with distance and time units where 1 is the 
characteristic time and distance, and so in these units it is immediately obvious what we should 
consider "big" and "small". For example, in the rescaled time units, 0.01 is a small time in which 
probably not much happens, while 100 is a big time in which the solution has probably changed 
a lot. In the original SI units we would have had to explicitly compare to the characteristic time 
L2/κ. 
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