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Lecture 4 

Removable Singularity Theorem 

Theorem 1 Let u be harmonic in Ω \ {x0}, if 

o( x − x0
2−n) , n > 2,| |

u(x) = 
o(ln x − x0 ) , n = 2 | |

as x x0, then u extends to a harmonic function in Ω.→

Proof: Without loss of generality, we can assume Ω = B(0, 2), then u|∂B(0,1) is contin
uous. Thus by Poisson Integral formula, ∃v ∈ C(B(0, 1)) ∩C∞(B(0, 1)) to be harmonic 
function with boundary condition v = u on ∂B(0, 1). 

Choose � > 0 and δ > 0 small, consider 

ω(x) = 
u(x) − v(x) − �( x 2−n − 1) , n > 2,| |
u(x) − v(x) + � log x ) , n = 2,| |

then ω(x) is harmonic on B1(0) \BBδ(0), and ω(x) = 0 on ∂B1(0). 
On ∂Bδ(0), −� x 2−n is the dominate term, thus ω ≤ 0 on ∂Bδ(0) for δ small enough. | |
Now by maximum principle, ω ≤ 0 on B1(0) \Bδ(0), i.e. 

u(x) ≤ v(x) + �( x 2−n − 1),| |

Thus by letting � → 0, we get 

u(x) ≤ v(x), ∀x ∈ B1(0) \Bδ(0). 

This is true for any δ small, so it is true for ∀x ∈ B1(0) \ {0}.

By reverting u and v, we can get


v(x) ≤ u(x), ∀x ∈ B1(0) \ {0}, 

thus v(x) = u(x), ∀x ∈ B1(0) \ {0}. 
Now we can define u(0) = v(0), and extend u to be a harmonic function on B(0, 1), 

thus a harmonic function on Ω = B(0, 2). � 

Example This gives an example of Dirichlet problem that is NOT solvable: 
Take Ω = B(0, 1) \ {0}, then ∂Ω = ∂B(0, 1) ∪ {0}. Consider the Dirichlet problem ⎧ ⎨	 Δu = 0 , in Ω, 

u = 0 , on ∂B(0, 1),⎩ 
u = 1 , at 0 
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If this is solvable, then the solution u can be extend to a bounded harmonic function 
on B(0, 1). Now by MVP, u(0) = 0, which is a contradiction. 

Laplacian in general coordinate systems 

Theorem 2 Let gij be the metric component of a coordinate system, then 

1 
∂k (gkj ∂j uΔu = � det(grs)). 

det(grs) 

Proof: Take any ϕ ∈ C∞, we have 0 

ϕΔu det(gij )dy = ϕΔudx 

= < �ϕ, �u > dx 

= gij ∂iϕ∂j u det(gij )dy 

= ϕ∂i(gij ∂j u det(gij ))dy � � ∂i(gij ∂j u 
� 

det(gij ))= ϕ det(gij ) � dy. 
det(gij ) 

Thus the formula follows. � 

Laplacian in spherical coordinates (r, ω) 
2Now g = dr2 + r gSn−1 , so 

1 0 1 0
(gij ) = = (gij ) = 

0 r−2g
Sn−1 

.2 ij0 r gSn−1 
⇒ 

so � � 
det(gij ) = r2(n−1)det(gSn−1 ) = r n−1 det(gSn−1 ), 

thus 
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1
Δu = � ∂1(g 1j ∂ju r n−1 det(gSn−1 ))

rn−1 det(gSn−1 )

1 

+	 � ∂k(gkj ∂j u r n−1 det(gSn−1 ))
rn−1 det(gSn−1 ) 

k>1 

1	 1 ij= 
rn−1 ∂r(∂ru r n−1) + � 

det(gSn−1 ) 
∂k(r−2 g

Sn−1 ∂j u det(gSn−1 ))
k>1 

1 
= ∂r(∂ru r n−1) + r−2ΔSn−1 u 

rn−1 

1 
= 

rn−1 (urr r n−1 + ur(n − 1)r n−2) + r−2ΔSn−1 u 

= urr + (n − 1) 
ur + 

1
ΔSn−1 u.

2r r

If u(r, θ) = f (r)B(θ) is variables separated, then 

f (r)
Δu(r, θ) = (frr + (n − 1) 

fr )Bθ + ΔSn−1 B(θ).
2r r

Proposition 1 Let B(θ) be a homogeneous harmonic polynomial of degree k restricted 
to Sn−1, then ΔSn−1 B(θ) = −k(k + n − 2)B(θ). 

Remark 1 Let Pk be the set of homogeneous polynomials of degree k on Rn , Hk be the 
set of harmonic homogeneous polynomials of degree k on Rn, then 

2
k = k ⊕ r k−2.P H P

It’s not hard to prove 

dimPk =
(k + n − 1)! 

,
k!(n − 1)! 

so 

dimHk =
(k + n − 1)! (k + n − 3)! 

. 
k!(n − 1)! 

−
(k − 2)!(n − 1)! 

= (2k + n − 2)
(k + n − 3)! 
k!(n − 2)! 

For such a B(θ) ∈ Hk, we have 

frΔ(f (r)B(θ)) = (frr + 
n − 1 

fr − k(k + n − 2) 
2 )B(θ). 

r	 r

For the solution of the equation 

fr
frr + 

n − 1 
fr − k(k + n − 2) = 0,

2r	 r

let f = rp, then fr = p rp−1, frr = p(p − 1)rp−2, we get 

0 = p(p − 1)rp−2 + p(n − 2)rp−2 − k(k + n − 2)rp−2 = (p − k)(p + k + n − 2)rp−2 . 
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Thus p = k or p = −k − n + 2. 
For p = k, we get u(r, θ) = rk B(θ), where B(θ) ∈ Hk , thus u is just the homogeneous 

k harmonic polynomial on Rn . 
For those p = −k − n + 2, if k = 0, then p = 2 − n and B(θ) = constant, thus 

u = c · r2−n, which is the fundamental solution. if k > 0, then p < 2 − n, note that 
B(θ) is defined on the compact set Sn−1, thus B is bounded, so u grows faster than 
the fundamental solution near the origin. 

From above we get a degree gap of harmonic function: 

· · · · · · , −n, −(n − 1), −(n − 2), �, 0, 1, 2, · · · · · · 

Notice that we have to have the gap in view of our removable singularity theorem. 

Homogeneous expansions 

Theorem 3 Any harmonic function in B(0, 1) can be expressed as an infinite sum 

∞

u(x) = pk (x), pk ∈ Hk . 
k=0 

Proof: Take the Taylor expansion of u, u = pk , where pk ∈ Pk , we have 

0 = Δu = Δpk, 

but Δpk ∈ Pk−2, thus Δpk = 0 for all k, i.e. pk ∈ Hk . � 
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