Lecture 3

MVP + integrable \Leftrightarrow harmonic

Theorem 1 Suppose $u \in L_{l o c}^{1}$, then u is harmonic $\Leftrightarrow u$ satisfies MVP on Ω.
Proof: Take C^{∞} function ρ on \mathbb{R}^{n} with properties: (a) $\operatorname{Supp}(\rho) \subset \overline{B(0,1)}$; (b) $\rho \geq 0$; (c) ρ is radical, i.e. $\rho(x)=\rho(|x|)$; and (d) $\int_{B(0,1)} \rho(x) d x=1$.

By these properties, we have

$$
1=\int_{B}(0,1) \rho(x) d x=\int_{0}^{1} \int_{\partial B(0, s)} \rho(s) d \sigma d s=\int_{0}^{1} \rho(s) n \omega_{n} s^{n-1} d s
$$

Define $\rho^{(r)}(x)=\frac{1}{r^{n}} \rho\left(\frac{|x|}{r}\right), u_{r}(x)=\rho^{(r)}(x) * u=\frac{1}{r^{n}} \int_{\Omega} \rho\left(\frac{|x-y|}{r}\right) u(y) d y$. (Without loss of generality, we can assume $u \in L^{1}(\Omega)$ - otherwise we consider near every point s.t. u is integrable.)

Now we have

$$
\begin{aligned}
u_{r}(y) & =\frac{1}{r^{n}} \int_{\Omega} \rho\left(\frac{|x-y|}{r}\right) u(x) d x \\
& =\frac{1}{r^{n}} \int_{B(y, r)} \rho\left(\frac{|x-y|}{r}\right) u(x) d x \\
& =\frac{1}{r^{n}} \int_{0}^{r} \int_{\partial B(y, s)} \rho\left(\frac{|x-y|}{r}\right) u(x) d \sigma d s \\
& =\frac{1}{r^{n}} \int_{0}^{r} \int_{\partial B(y, s)} \rho\left(\frac{s}{r}\right) u(x) d \sigma d s \\
& =\frac{1}{r^{n}} \int_{0}^{r} \rho\left(\frac{s}{r}\right) n \omega_{n} s^{n-1} u(y) d s \\
& =\frac{n \omega_{n} u(y)}{r^{n}} \int_{0}^{r} \rho\left(\frac{s}{r}\right) s^{n-1} d s \\
& =\frac{n \omega_{n} u(y)}{r^{n}} \int_{0}^{1} r \rho(t) r^{n-1} t^{n-1} d t \\
& =n \omega_{n} u(y) \int_{0}^{1} \rho(t) t^{n-1} d t \\
& =u(y) .
\end{aligned}
$$

But $\rho \in C^{\infty} \Rightarrow u_{r} \in C^{\infty}$, so $u \in C^{\infty}$. Thus MVP $\Rightarrow u$ is harmonic by last lecture.

Weak Solution

For the function $\Gamma(x)$, we have (in distributional sense) $\Delta \Gamma(x)=\delta_{0}(x)$, i.e. for $\varphi \in C_{c}^{2}\left(\mathbb{R}^{n}\right)$,

$$
\int_{\mathbb{R}^{n}} \Gamma(x) \Delta \varphi(x) d x=\varphi(0)=\int \varphi \delta(0) .
$$

More generally, $\Delta \Gamma(x-y)=\delta_{y}(x)$.
Proof: Choose R large so that Suppe $\subset B(0, R)$. Choose ρ small. From Green's formula we get

$$
\int_{\mathbb{R}^{n}-B(0, \rho)} \Gamma \Delta \varphi d x=\int_{\partial B_{\rho}}\left(\Gamma \frac{\partial \varphi}{\partial \nu}-u \frac{\partial \Gamma}{\partial \nu}\right) d s
$$

As $\rho \rightarrow 0$, we get

$$
\begin{gathered}
\int_{\mathbb{R}^{n}-B(0, \rho)} \Gamma \Delta \varphi d x \rightarrow \int_{\mathbb{R}^{n}} \Gamma \Delta \varphi d x \\
\Gamma(\rho) \int_{\partial B_{\rho}} \frac{\partial \varphi}{\partial \nu} d s \leq \frac{c}{\rho^{n-2}} \rho^{n-1} \rightarrow 0 \\
-\int_{\partial B_{\rho}} u \frac{\partial \Gamma}{\partial \nu}=\frac{1}{n \omega_{n}} \frac{1}{\rho^{n-1}} \int_{\partial B_{\rho}} u d \sigma \rightarrow u(0)
\end{gathered}
$$

which give what we claimed.

Application: $G(x, y)=G(y, x)$

$$
\begin{aligned}
G(x, y)-G(y, x) & =\int_{\Omega}(G(x, z) \delta(y-z)-G(y, z) \delta(x-z)) d z \\
& =\int_{\Omega}\left(G(x, z) \Delta_{z} \Gamma(y-z)-G(y, z) \Delta_{z} \Gamma(x-z)\right) d z \\
& =\int_{\partial \Omega}\left(G(x, z) \frac{\partial}{\partial \nu_{z}} \Gamma(y-z)-G(y, z) \frac{\partial}{\partial \nu_{z}} \Gamma(x-z)\right) d z \\
& =0
\end{aligned}
$$

Weyl's Lemma: Regularity of weakly harmonic functions

Theorem 2 Suppose $u \in L_{0}^{1}(\Omega)$ satisfies $\int_{\Omega} u(x) \Delta \varphi(x) d x=0$ for $\forall \varphi \in C_{c}^{2}(\Omega)$. Then u is harmonic in Ω.

Proof: Without loss of generality, we can assume $u \in L^{1}(\Omega)$.
Again we take

$$
u_{r}(x)=\rho^{(r)}(x) * u=\frac{1}{r^{n}} \int_{\Omega} \rho\left(\frac{|x-y|}{r}\right) u(y) d y
$$

Claim 1. $\int_{\Omega} f(y-x) \Delta g(x) d x=\Delta_{y} \int_{\Omega} f(y-x) g(x) d x, \forall f, g$:

$$
\begin{aligned}
\Delta_{y} \int_{\Omega} f(y-x) g(x) d x & =\Delta_{y} \int_{\Omega} f(x) g(y-z) d z \\
& =\int_{\Omega} f(z) \Delta_{y} g(y-z) d z \\
& =\int_{\Omega} f(y-x) \Delta g(x) d x
\end{aligned}
$$

Claim 2. $\int_{\Omega} u_{r}(x) \Delta \varphi(x) d x=\int_{\Omega} u(x) \Delta \varphi_{r}(x) d x:$

$$
\begin{aligned}
\int_{\Omega} u_{r}(x) \Delta \varphi(x) d x & =\int_{\Omega} \frac{1}{r^{n}}\left(\int_{\Omega} \rho\left(\frac{|x-y|}{r}\right) u(y) \Delta \varphi(x) d y\right) d x \\
& =\int_{\Omega}\left(\int_{\Omega} \frac{1}{r^{n}} \rho\left(\frac{|x-y|}{r}\right) u(y) \Delta \varphi(x) d x d y\right. \\
& =\int_{\Omega} u(y)\left(\int_{\Omega} \frac{1}{r^{n}} \rho\left(\frac{|x-y|}{r}\right) \Delta \varphi(x) d x d y\right. \\
& =\int_{\Omega} u(y) \Delta_{y}\left(\frac{1}{r^{n}} \int_{\Omega} \rho\left(\frac{|x-y|}{r}\right) \varphi(x) d x\right) d y \\
& =\int_{\Omega} u(y) \Delta_{y} \varphi_{r}(y) d y
\end{aligned}
$$

Claim 3. $u_{r}(x)$ is harmonic.
In fact, for any $\varphi \in C_{c}^{2}(\Omega), \Delta \varphi_{r}(y) \in C_{c}^{2}(\Omega)$, so by the assumption we have

$$
\int_{\Omega} u(y) \Delta_{y} \varphi_{r}(y) d y=0
$$

Thus by claim $2, \int_{\Omega} u_{r}(x) \Delta \varphi(x) d x=0$ for any $\varphi \in C_{c}^{2}(\Omega)$.
But $u_{r}(x) \in C^{\infty}(\Omega)$, thus

$$
\int_{\Omega} u_{r}(x) \Delta \varphi(x) d x=\int_{\Omega} \Delta u_{r}(x) \varphi(x) d x
$$

So we get

$$
\int_{\Omega} \Delta u_{r}(x) \varphi(x) d x=0, \forall \varphi \in C_{c}^{2}(\Omega)
$$

which implies $\Delta u_{r}(x)=0$, i.e. $u_{r}(x)$ is harmonic.
Claim 4. $\left\{u_{r}\right\}$ uniquely bounded and equicontinuous on any $\Omega^{\prime} \subset \subset \Omega$.
In fact, $u_{r}=\rho^{(r)} * u$ implies

$$
\left\|u_{r}\right\|_{L^{1}} \leq\left\|\rho^{(r)}\right\|_{L^{1}}\|u\|_{L^{1}} \leq\|u\|_{L^{1}}
$$

so

$$
\sup _{\Omega^{\prime} \subset \subset \Omega}\left|D^{k} u_{r}\right| \leq C \cdot \sup _{\Omega}\left|u_{r}\right| \leq C\|u\|_{L^{1}} .
$$

Since u_{r} harmonic, we get

$$
u_{r}(y)=\frac{1}{\omega_{n} R^{n}} \int_{B(y, R)} u_{r}(x) d x
$$

which implies

$$
\left|u_{r}(y)\right| \leq \frac{1}{\omega_{n} R^{n}}\|u\|_{L^{1}}
$$

Claim 5. u is smooth.
In fact, by Arzela-Ascoli theorem, there is some subsequence $r_{i} \rightarrow 0, i \rightarrow \infty$ s.t. $u_{r_{i}} \rightarrow v \in C^{\infty}$ on $\Omega^{\prime} \subset \Omega$.

But $u_{r_{i}}=\rho^{\left(r_{i}\right)} * u \rightarrow u$ in L^{1} as $r_{i} \rightarrow 0$, so $u=v$ on Ω^{\prime}. Thus u is smooth on Ω. Now since u is smooth, we have

$$
0=\int_{\Omega} u \Delta \varphi=\int_{\Omega} \varphi \Delta u, \forall \varphi
$$

so $\Delta u=0$, i.e. u is harmonic.

