Lecture 11

Review of Green's functions.

$G: \Omega \times \Omega \longrightarrow \mathbb{R}$.
Given $x \in \Omega$, let $h_{x}(y): \Omega \longrightarrow \mathbb{R}$ be s.t. $\Delta_{y} h_{x}(y)=0$ and $h_{x}(y)=-\Gamma(|x-y|)$ for $y \in \partial \Omega$.

By definition, $G(x, y)=\Gamma(|x-y|)+h_{x}(y)$.
If Green's function exists, then for $u \in C^{1}(\bar{\Omega}) \cap C^{2}(\Omega), y \in \Omega$, we have

$$
u(y)=\int_{\partial \Omega} u(x) \frac{\partial G(x, y)}{\partial \nu} d \sigma+\int_{\Omega} G(x, y) \Delta u(x) d x
$$

Thus we can see:
If $u=0$ on $\partial \Omega$, then $u(y)=\int_{\Omega} G(x, y) \Delta u(x) d x=G * \Delta u$.
(Compare) By Green's formula, we have If $u \in C_{c}^{2}\left(\mathbb{R}^{n}\right)$, then $u(y)=\Gamma * \Delta u$.

Proposition 1 a) $G(x, y)=G(y, x)$;
b) $G(x, y)<0$, for $x, y \in \Omega, x \neq y$.
c) $\int_{\Omega} G(x, y) f(y) d y \rightarrow 0$ as $x \rightarrow \partial \Omega$, where f is bounded and integrable.

Proof of \mathbf{c}): From definition, $G(x, y)=0$ if $x \in \Omega, y \in \partial \Omega$.
By a), $G(x, y)=0$ for $y \in \Omega, x \in \partial \Omega$.
Thus $G: \bar{\Omega} \times \bar{\Omega}-\{\operatorname{diag}\} \longrightarrow \mathbb{R}$.

$$
\begin{aligned}
\left|\int_{\Omega}\right| G(x, y) f(y) \mid d y & \leq\|f\|_{L^{\infty}} \int_{\Omega}|G(x, y)| d y \\
& \leq\|f\|_{L^{\infty}} \int_{\Omega} \frac{C}{|x-y|^{n-2}} d y \\
& \leq C\|f\|_{L^{\infty}}
\end{aligned}
$$

By dominate convergence, we can change limit and integral.

Example. Green's function for \mathbb{R}_{+}^{n}

Given $y=\left(y^{1}, \cdots, y^{n}\right)$, let $y^{*}=\left(y^{1}, \cdots, y^{n-1},-y^{n}\right)$.
It is easy to check that $G(x)=\Gamma(x-y)-\Gamma\left(x-y^{*}\right)=\Gamma(x-y)-\Gamma\left(x^{*}-y\right)$ is Green's function for \mathbb{R}_{+}^{n} :

- $h_{x}(y)=G(x, y)-\Gamma(x-y)$ is harmonic in Ω;
- $G(x, y)=0$ on $\partial \Omega$.

Review of Schwartz reflection.

First we go back to harmonic functions.

Theorem $1 A C^{0}(\Omega)$ function u is harmonic if and only if for every ball $B_{R}(y) \subset \subset \Omega$, we have

$$
u(y)=\frac{1}{n \omega_{n} R^{n-1}} \int_{\partial B} u d s
$$

Proof: \Longrightarrow is just mean value theorem.
\Longleftarrow : Use the Poisson kernel: Given any Ball $B_{R}(y) \subset \Omega$, Define

$$
h(x)= \begin{cases}\frac{R^{2}-\left|x^{2}\right|}{n \omega_{n} R} \int_{\partial B} \frac{u(y)}{|x-y|^{n}} d s & , \quad x \in B_{R} \\ u(x) & , \quad x \in \partial B\end{cases}
$$

Then $h \in C^{2}\left(B_{R}\right) \cap C^{0}\left(\overline{B_{R}}\right)$ and satisfies $\Delta u=0$. So h satisfies the mean value property. Therefore $u-h$ satisfies the mean value property and $u=h$ on ∂B_{R}.

But recall the uniqueness theorem for solutions of Poisson's equation - we only used the mean value property. Therefore $u=h$, so u is harmonic.

Now suppose $\Omega^{+} \subset \mathbb{R}_{+}^{n}, T=\overline{\Omega^{+}} \cap \partial \mathbb{R}_{+}^{n}$ is a domain in $\partial \mathbb{R}_{+}^{n}$. Let $\Omega^{-}=\left(\Omega^{+}\right)^{*}$, i.e.

$$
\Omega^{-}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n} \mid\left(x_{1}, \cdots,-x_{n}\right) \in \Omega^{+}\right\}
$$

Suppose we have u harmonic in $\Omega^{+}, u \in C^{0}\left(\Omega^{+} \cup T\right)$, and $u=0$ on T. Define

$$
u\left(x_{1}, \cdots, x_{n}\right)= \begin{cases}u\left(x_{1}, \cdots, x_{n}\right) & , \quad x \Omega^{+} \cup T \\ u\left(x_{1}, \cdots,-x_{n}\right) & , \quad x \in \Omega^{-}\end{cases}
$$

Theorem 2 The function u defined above is harmonic in $\Omega^{+} \cup T \cup \Omega^{-}$.
Proof: Obviously u is in $C^{0} \Omega^{+} \cup T \cup \Omega^{-}$.
If one examines the above proof, one only requires that for each point $y \in \Omega, \exists R>0$ so that mean value property holds in $B_{r}(y), r<R$. Also remember in the proof of maximum principle, we assumed that the function has a interior max, then use mean value theorem in small ball around this point.

Certainly here we have this property in $\Omega^{+} \cup \Omega^{-}$, and on T if follows from the definition of $u, \int_{\partial B_{R}(x \in T)} u=0$.

$C^{2, \alpha}$ boundary estimate for Poisson's equation with flat boundary portion.

Theorem 3 Let $u \in C^{2}\left(B_{2}^{+}\right) \cap C^{0}\left(\overline{B_{2}^{+}}\right), f \in C^{\alpha}\left(B_{2}^{+}\right)$, and $\Delta u=f$ in B_{2}^{+}, $u=0$ on T. Then $u \in C^{2, \alpha}\left(B_{1}^{+}\right)$and

$$
\|u\|_{C^{2, \alpha}\left(B_{1}^{+}\right)} \leq C\left(\|u\|_{C^{0}\left(B_{2}^{+}\right)}+\|f\|_{C^{\alpha}\left(B_{2}^{+}\right)}\right)
$$

Proof: Reflect f with respect to T, i.e.

$$
f^{*}(x)=f^{*}\left(x_{1}, \cdots, x_{n}\right)= \begin{cases}f\left(x_{1}, \cdots, x_{n}\right) & , \quad x_{n} \geq 0 \\ f\left(x_{1}, \cdots,-x_{n}\right) & , \quad x_{n} \leq 0\end{cases}
$$

Let $D=B_{2}^{+} \cup B_{2}^{-} \cup\left(B_{2} \cap T\right)$, then $f^{*} \in C^{\alpha}(\bar{D})$ and $\|f\|_{C^{\alpha}(D)} \leq 2\|f\|_{C^{\alpha}\left(B_{2}^{+}\right)}$. Let $G(x, y)$ be the Green's function of upper half space. Define

$$
\begin{aligned}
\omega(x) & =\int_{B_{2}^{+}} G(x, y) f(y) d y \\
& =\int_{B_{2}^{+}}\left(\Gamma(x-y)-\Gamma\left(x-y^{*}\right)\right) f(y) d y \\
& =\int_{B_{2}^{+}}\left(\Gamma(x-y)-\Gamma\left(x^{*}-y\right)\right) f(y) d y \\
& =\int_{B_{2}^{+}} \Gamma(x-y) f(y) d y-\int_{B_{2}^{-}} \Gamma(x-y) f^{*}(y) d y
\end{aligned}
$$

Then $\Delta \omega=f$. It's easy to check that $\omega(x)=0$ on T. Thus

$$
\int_{B_{2}^{-}} \Gamma(x-y) f^{*}(y) d y=\int_{D} \Gamma(x-y) f^{*}(y) d y-\int_{B_{2}^{+}} \Gamma(x-y) f(y) d y,
$$

so

$$
\omega(x)=2 \int_{B_{2}^{+}} \Gamma(x-y) f(y) d y-\int_{D} \Gamma(x-y) f^{*}(y) d y
$$

We did estimates for the first term earlier. For the second term, think of $B_{1}^{+} \subset D$ and just use interior estimates from last week. We thus get

$$
\|\omega\|_{C^{2, \alpha\left(B_{1}^{+}\right)}} \leq C\|f\|_{C^{0, \alpha}\left(B_{2}^{+}\right)} .
$$

Let $v=u-\omega$ in B_{2}^{+}, then on B_{2}^{+}we have $\Delta v=\Delta u-\Delta \omega=f-f=0$ and $v=0$ on T.

We may reflect v, then by Schwartz reflection we know that v^{*} is harmonic in D. Now use the interior estimates for harmonic functions, we get

$$
\|v\|_{C^{2, \alpha}\left(B_{1}^{+}\right)} \leq C\left\|v^{*}\right\|_{C^{0}(D)} \leq 2\|v\|_{C^{0}(D)} .
$$

So

$$
\|u\|_{C^{2, \alpha}\left(B_{1}^{+}\right)} \leq\|v\|_{C^{2, \alpha}\left(B_{1}^{+}\right)}+\|\omega\|_{C^{2, \alpha}\left(B_{1}^{+}\right)} \leq C\left(\|u\|_{C^{0}\left(B_{2}^{+}\right)}+\|f\|_{C^{\alpha}\left(B_{2}^{+}\right)}\right) .
$$

Application: Global $C^{2, \alpha}$ Regularity Theorem for Dirichlet problem in a ball with zero boundary data.

Theorem 4 Suppose B is a ball in \mathbb{R}^{n}, $u \in C^{2}(B) \cap C^{0}(\bar{B}), f \in C^{\alpha}(\bar{B}), \Delta u=f$ in B and $u=0$ on ∂B. Then $u \in C^{2, \alpha}(\bar{B})$.

Proof: By dilation and translation, we can assume $B=B_{1 / 2}\left(0, \cdots, 0, \frac{1}{2}\right)$.
Look at the inversion $x \rightarrow I x=\frac{x}{|x|^{2}}$, then the ball B is mapped to a half space $B^{*}=\left\{x \mid x_{n} \geq 1\right\}$ while ∂B is mapped onto $\partial B^{*}=\left\{x_{n}=1\right\}$.

The Kelvin Transform of u is $v(x)=|x|^{2-n} u\left(\frac{x}{|x|^{2}}\right) \in C^{2}\left(B^{*}\right) \cap C^{0}\left(\overline{B^{*}}\right)$ and we have

$$
\Delta_{y} v(y)=|y|^{-n-2} \Delta_{x} u(x)=|y|^{-n-2} f\left(\frac{y}{|y|^{2}}\right) \in C^{\alpha}\left(B^{*}\right)
$$

By the previous theorem, $u \in C^{2, \alpha}$ up to the boundary.
By rotation, we could do this for any boundary point, so $u \in C^{2, \alpha}$.
Corollary 1 Suppose $\varphi \in C^{2, \alpha}(\bar{B}), f \in C^{\alpha}(\bar{B})$. Then the Dirichlet problem

$$
\begin{cases}\Delta u=f & , x \in B \\ u=\varphi & , \quad x \in \partial B\end{cases}
$$

is uniquely solvable for $u \in C^{2, \alpha}(\bar{B})$.

Proof:The existence of u comes from Perron's method.
Since $\Delta \varphi \in C^{\alpha}(\bar{B})$, so let v be the unique solution of $\Delta v=f-\Delta \varphi$ in B with $v=0$ on ∂B. Then $\left.v \in C^{(} B\right) \cap C^{0}(\partial \bar{B})$. By above result, $v \in C^{2, \alpha}(\bar{B})$.

But $u-\varphi$ solves the problem also: $\Delta(u-\varphi)=\Delta u-\Delta \varphi=f-\Delta \varphi$ in $\bar{B} ; u-\varphi=0$ on $\partial \bar{B}$. By uniqueness, $v=u-\varphi$. So $u \in C^{2, \alpha}(\bar{B})$.

