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Lecture 11 

Review of Green’s functions. 
G : Ω × Ω −→ R.

Given x ∈ Ω, let hx(y) : Ω −→ R be s.t. Δy hx(y) = 0 and hx(y) = −Γ( x − y ) for
| |

y ∈ ∂Ω. 
By definition, G(x, y) = Γ( x − y ) + hx(y).| |
If Green’s function exists, then for u ∈ C1(Ω) ∩ C2(Ω), y ∈ Ω, we have 

∂G(x, y) 
u(y) = u(x) dσ + G(x, y)Δu(x)dx. 

∂Ω ∂ν Ω 

Thus we can see: 
If u = 0 on ∂Ω, then u(y) = Ω G(x, y)Δu(x)dx = G ∗Δu. 

(Compare) By Green’s formula, we have 
If u ∈ Cc 

2(Rn), then u(y) = Γ ∗Δu. 

Proposition 1	 a) G(x, y) = G(y, x); 
b) G(x, y) < 0, for x, y ∈ Ω, x = y. 
c) Ω G(x, y)f (y)dy → 0 as x ∂Ω, where f is bounded and integrable. → 

Proof of c): From definition, G(x, y) = 0 if x ∈ Ω, y ∈ ∂Ω. 

By a), G(x, y) = 0 for y ∈ Ω, x ∈ ∂Ω. 
Thus G : Ω × Ω − {diag} −→ R. 

|G(x, y)f (y)	 |G(x, y) dy|	 |dy ≤ �f �L∞ �Ω 
|

Ω 

C 
| |n−2 dy≤ �f �L∞ 

Ω x − y

≤ C�f �L∞ . 

By dominate convergence, we can change limit and integral. � 

Example. Green’s function for Rn 
+ 

Given y = (y1 , · · · , yn), let y∗ = (y1 , · · · , yn−1 , −yn). 
It is easy to check that G(x) = Γ(x −y) −Γ(x −y∗) = Γ(x −y) −Γ(x∗ −y) is Green’s 

function for Rn :+

•hx(y) = G(x, y) − Γ(x − y) is harmonic in Ω; 
•G(x, y) = 0 on ∂Ω. 

Review of Schwartz reflection. 
First we go back to harmonic functions. 
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Theorem 1 A C0(Ω) function u is harmonic if and only if for every ball BR(y) ⊂⊂ Ω, 
we have �

1 
u(y) = uds. 

nωnRn−1 
∂B 

Proof: = is just mean value theorem. ⇒ 

⇐=: Use the Poisson kernel: Given any Ball BR(y) ⊂ Ω, Define � 
R2−|x2| � u(y) 

n ds , x ∈ BR,nωnR ∂B x−yh(x) = 
u(x) 

| |
, x ∈ ∂B. 

Then h ∈ C2(BR) ∩ C0(BR) and satisfies Δu = 0. So h satisfies the mean value 
property. Therefore u − h satisfies the mean value property and u = h on ∂BR. 

But recall the uniqueness theorem for solutions of Poisson’s equation – we only used 
the mean value property. Therefore u = h, so u is harmonic. � 

+, T = Ω+ ∩ ∂Rn is a domain in ∂RnNow suppose Ω+ ⊂ Rn 
+. Let Ω− = (Ω+)∗, i.e. + 

Ω− = .{(x1, · · · , xn) ∈ Rn|(x1, · · · , −xn) ∈ Ω+}

Suppose we have u harmonic in Ω+ , u ∈ C0(Ω+ ∪ T ), and u = 0 on T . Define 

, xΩ+ ∪ T, 
u(x1, · · · , xn) = 

u(x1, · · · , xn) 
, x ∈ Ω−.u(x1, · · · , −xn) 

Theorem 2 The function u defined above is harmonic in Ω+ ∪ T ∪ Ω−. 

Proof: Obviously u is in C0Ω+ ∪ T ∪ Ω−. 
If one examines the above proof, one only requires that for each point y ∈ Ω, ∃R > 0 

so that mean value property holds in Br (y), r < R. Also remember in the proof of 
maximum principle, we assumed that the function has a interior max, then use mean 
value theorem in small ball around this point. 

Certainly here we have this property in Ω+ ∪ Ω−, and on T if follows from the 
definition of u, ∂BR(x∈T ) u = 0. � 

C2,α boundary estimate for Poisson’s equation with flat boundary portion. 

Theorem 3 Let u ∈ C2(B2
+) ∩ C0(B2

+), f ∈ Cα(B2
+), and Δu = f in B2

+ , u = 0 on 
T . Then u ∈ C2,α(B1

+) and 

�u�C2,α(B+
2 ) + �f�Cα (B+ 

1 ) ≤ C(�u�C0(B+
2 )

). 
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Proof: Reflect f with respect to T , i.e. 

, xn ≥ 0,
f ∗(x) = f ∗(x1, · · · , xn) = 

f (x1, · · · , xn) 
, xn ≤ 0.f (x1, · · · , −xn) 

Let D = B2
+ ∪ B2

− ∪ (B2 ∩ T ), then f ∗ ∈ Cα(D) and �f �Cα(D) ≤ 2�f �Cα(B+ . Let 
2 )

G(x, y) be the Green’s function of upper half space. Define 

ω(x) = G(x, y)f (y)dy 
B+ � 2 

= (Γ(x − y) − Γ(x − y∗))f (y)dy 
B+ � 2 

= (Γ(x − y) − Γ(x∗ − y))f (y)dy 
B+ � 2 

Γ(x − y)f (y)dy − Γ(x − y)f ∗(y)dy. = 
B+ 

2 B−2 

Then Δω = f . It’s easy to check that ω(x) = 0 on T . Thus 

−
2 

Γ(x − y)f ∗(y)dy = Γ(x − y)f ∗(y)dy − Γ(x − y)f (y)dy, 
D B+ 

2B

so � � 
ω(x) = 2 Γ(x − y)f (y)dy − Γ(x − y)f ∗(y)dy. 

B+ D2 

We did estimates for the first term earlier. For the second term, think of B1
+ ⊂ D 

and just use interior estimates from last week. We thus get 

+
2 ).�ω�

C2,α(B1 ) ≤ C�f �C0,α(B+ 

Let v = u − ω in B2
+, then on B+ we have Δv = Δu −Δω = f − f = 0 and v = 0 2 

on T . 
We may reflect v, then by Schwartz reflection we know that v∗ is harmonic in D. 

Now use the interior estimates for harmonic functions, we get 

1 ) ≤ C�v∗�C0(D) ≤ 2�v�C0(D).�v�C2,α(B+ 

So 

�u�C2,α(B+ ,α(B+ + �ω�C2,α(B+
2 )). � 

1 ) ≤ �v�C2
1 ) 1 ) ≤ C(�u�C0(B+ + �f �Cα(B+ 

2 ) 

Application: Global C2,α Regularity Theorem for Dirichlet problem in a ball 
with zero boundary data. 
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Theorem 4 Suppose B is a ball in Rn , u ∈ C2(B) ∩ C0(B), f ∈ Cα(B), Δu = f in 
B and u = 0 on ∂B. Then u ∈ C2,α(B). 

1Proof: By dilation and translation, we can assume B = B1/2(0, · · · , 0, 2 ). 
Look at the inversion x Ix = x 

2 , then the ball B is mapped to a half space 
x

→ | |
B∗ = xn ≥ 1} while ∂B is mapped onto ∂B∗ = {xn = 1}.{x|

The Kelvin Transform of u is v(x) = |x|2−nu( x 
2 ) ∈ C2(B∗) ∩ C0(B∗) and we have 

x| |

Δy v(y) = |y|−n−2Δxu(x) = |y|−n−2f( 
|y
y 
|2 ) ∈ Cα(B∗). 

By the previous theorem, u ∈ C2,α up to the boundary. 
By rotation, we could do this for any boundary point, so u ∈ C2,α. � 

Corollary 1 Suppose ϕ ∈ C2,α(B), f ∈ Cα(B). Then the Dirichlet problem 

Δu = f , x ∈ B, 
u = ϕ , x ∈ ∂B. 

is uniquely solvable for u ∈ C2,α(B). 

Proof:The existence of u comes from Perron’s method. 
Since Δϕ ∈ Cα(B), so let v be the unique solution of Δv = f −Δϕ in B with v = 0 

on ∂B. Then v ∈ C(B) ∩ C0(∂B). By above result, v ∈ C2,α(B). 
But u − ϕ solves the problem also: Δ(u − ϕ) = Δu −Δϕ = f −Δϕ in B; u − ϕ = 0 

on ∂B. By uniqueness, v = u − ϕ. So u ∈ C2,α(B). � 
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