Lecture 0

Course overview

In this course, we will mainly be concerned with the following problems:

1) Harmonic functions $\Delta u=0$, i.e. $\sum_{i} u_{i i}=0$.

Dirichlet problem: $\left(\Omega \subset \mathbb{R}^{n}\right)$

$$
\begin{cases}\Delta u=0 & , x \in \Omega \\ u=\varphi & , \quad x \in \partial \Omega\end{cases}
$$

2) Heat equation: $u_{t}=\Delta u, u: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$.

Boundary value problem: cylinder domain $\Omega \times[0, T), \Omega \subset \mathbb{R}^{n}$.

$$
\begin{cases}u_{t}=\Delta u & , \quad(x, t) \in \Omega \times[0, T) \\ u=\varphi & , \quad(x, t) \in \Omega \times\{0\} \cup \partial \Omega \times[0, T)\end{cases}
$$

3)Poisson Equation: $\left(\Omega \subset \mathbb{R}^{n}\right)$

$$
\begin{cases}\Delta u=f & , x \in \Omega \\ u=\varphi & , \quad x \in \partial \Omega\end{cases}
$$

For which f, φ, Ω can we solve?
Parabolic:

$$
\begin{cases}u_{t}-\Delta u=f(x, t) & , \quad(x, t) \in \Omega \times[0, T) \\ u=\varphi(x, t) & , \quad(x, t) \in \Omega \times\{0\} \cup \partial \Omega \times[0, T)\end{cases}
$$

We will prove existence theorems by method of priori estimates.
For $\Delta u=f$, when does certain regularity of f imply regularity of u ?

- If f continuous, is $u \in C^{2}$? $\mathbf{N O}$!

We will always consider in the Hölder spaces $C^{\alpha}(\Omega), C^{0, \alpha}(\Omega)$. The norm is

$$
\|f\|_{C^{\alpha}(\Omega)}=\sup _{x, y \in \Omega, x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}
$$

Thus $f \in C^{\alpha}(\Omega) \Longrightarrow|f(x)-f(y)| \leq\|f\|_{C^{\alpha}(\Omega)}|x-y|^{\alpha}$.
When $\alpha=1, f$ is just Lipstitz continuous functions.

For $\Delta u=f$ in Ω, we will get Interior Estimates

$$
\|u\|_{C^{2, \alpha}\left(\Omega^{\prime}\right)} \leq C\left(\|f\|_{C^{\alpha}(\Omega)}+\|u\|_{C^{0}(\Omega)}\right)
$$

where $\Omega^{\prime} \subset \subset \Omega, C=C\left(\Omega, \Omega^{\prime}\right)$.

Notion of weak solution:
$\Delta u=f$ weakly on Ω if $\int_{\Omega} u \Delta \varphi=\int_{\Omega} \varphi f, \forall \varphi \in C_{c}^{2}(\Omega)$, here $u \in L_{l o c}^{1}(\Omega)$.

Regularity theorem: If u is a weak solution, then u should has as much regularity as the priori estimates.

In practical problems, it's usually easy to prove existence of weak solutions.
The harder problem: prove weak solution is regular, and therefore solves the original equation strongly.

In general, the global estimates should depend on $\partial \Omega$ and φ :

$$
\begin{cases}\Delta u=f & , \quad x \in \Omega \\ u=\varphi & , \quad x \in \partial \Omega\end{cases}
$$

$f \in C^{\alpha}(\Omega)$. Assume φ is the restriction of a $C^{2, \alpha}$ function on \mathbb{R}^{n} to $\partial \Omega$, i.e. φ has a $C^{2, \alpha}$ extension, and $\partial \Omega$ is $C^{2, \alpha}$ smooth. Then $u \in C^{2, \alpha}(\bar{\Omega})$ and

$$
\|u\|_{C^{2, \alpha}(\bar{\Omega})} \leq C\left(\|f\|_{C^{2, \alpha}(\Omega)}+\|u\|_{C^{0}(\Omega)}+\|\varphi\|_{C^{2, \alpha}(\partial \Omega)}\right)
$$

L^{p} theory: $\Delta u=f, f \in L^{p}(\Omega) \cdot\left(\left(\int_{\Omega}|f|^{p}\right)^{\frac{1}{p}}<\infty\right)$
If u is a weak solution. Does $2^{n d}$ order derivation of u belong to L^{p}, i.e.

$$
\left(\int_{\Omega}\left|D^{2} u\right|^{p}\right)^{\frac{1}{p}}<\infty ? \quad 1<p<\infty
$$

We can get

$$
\|u\|_{W^{2, p}\left(\Omega^{\prime}\right)} \leq C\left(\|f\|_{L^{p}}+\|u\|_{L^{p}}\right) .
$$

We just look at Δ. The next is more general elliptic operators:

$$
L u=\sum_{i, j} a^{i j}(x) D_{i j} u+\sum_{i} b^{i}(x) D_{i} u+c(x) u=f .
$$

We also consider the following problems:

$$
\begin{aligned}
& \left\{\begin{array}{lll}
L u=f & , & x \in \Omega \\
u=\varphi & , & x \in \partial \Omega
\end{array}\right. \\
& \begin{cases}u_{t}-L u=f(x, t) & , \\
u=\varphi(x, t) & (x, t) \in \Omega \times[0, T),\end{cases} \\
& u=(x, t) \in \Omega \times\{0\} \cup \partial \Omega \times[0, T) .
\end{aligned}
$$

We call L is uniformly elliptic if $\Lambda I \geq\left(a^{i j}\right) \geq \lambda I, \lambda>0$.
Schauder Theory: L is uniformly elliptic, $a^{i j}, b_{i}, c \in C^{\alpha}(\Omega)$, then

$$
\|u\|_{C^{2, \alpha}\left(\Omega^{\prime}\right)} \leq C\left(\|f\|_{C^{\alpha}(\Omega)}+\|u\|_{C^{0}(\Omega)}\right)
$$

Idea: Assuming coefficients are all C^{α}, locally L is close to a constant coefficients operator.

Maximum principle: Bound C^{0} norm of solution in terms of boundary data of f.

$$
\|u\|_{C^{0}(\Omega)} \leq C\left(\|f\|_{C^{0}(\Omega)}+\sup |\varphi|\right) .
$$

This is an A Priori estimate:
I) Assume solution exists;
II) Prove solutions satisfies a priori bounds;
III) Therefore the solution exists.

Motivation: If you want to completely understand Perelman's proof of Poincaré conjecture, you have to know this stuff.

$$
\begin{aligned}
& \frac{\partial}{\partial t} g=-2 R i c \\
& \frac{\partial}{\partial t} g_{i j} \sim \Delta_{g} g_{i j}+\text { lower terms. }
\end{aligned}
$$

Fundamental Result: $\left(M^{3}, g\right)$ compact 3-manifold, then $\exists \varepsilon>0$ s.t. Ricci flow system has a smooth solution on $M \times[0, \varepsilon)$.
(This is called short time existence theorem.)

Examples of harmonic functions in \mathbb{R}^{n}

a) Constant.
b) linear functions.
c) Homogeneous harmonic polynomials: $\mathcal{H}^{k}\left(\mathbb{R}^{n}\right)$. $\operatorname{dim} \mathcal{H}^{k}\left(\mathbb{R}^{n}\right)=(2 k+n-2) \frac{(k+n-3)!}{k!(n-2)!}$.
d) $n=2$, the real or image part of holomorphic functions is harmonic.

They are C^{∞}. Even more, they are C^{ω}.
e) Fundamental solution

$$
u(x)=\left\{\begin{array}{lll}
\frac{C}{r^{n-2}} & , & n>2, \\
C \ln r & , & n=2 .
\end{array}\right.
$$

is harmonic on $\mathbb{R}^{n}-\{0\}$.

Fundamental solutions for Laplacian and heat operator

Definition 1

$$
\Gamma(x, y)= \begin{cases}\frac{1}{n(2-n) \omega_{n}}|x-y|^{2-n} & , \quad n>2 \\ \frac{1}{2 \pi} \log |x-y| & , \quad n=2\end{cases}
$$

Γ is harmonic:

$$
\begin{aligned}
& \frac{\partial \Gamma(x, y)}{\partial x^{i}}=\frac{1}{n \omega_{n}}\left(x^{i}-y^{i}\right) \frac{1}{|x-y|^{n}} \\
& \Longrightarrow \frac{\partial^{2} \Gamma(x, y)}{\partial x^{i} \partial x^{j}}=\frac{1}{n \omega_{n}}\left\{\frac{1}{|x-y|^{n}} \delta_{i j}-\frac{n\left(x^{i}-y^{i}\right)\left(x^{j}-y^{j}\right)}{|x-y|^{n+2}}\right\} \\
& \Longrightarrow \Delta_{x} \Gamma(x, y)=0 \\
& \Longrightarrow \Delta_{y} \Gamma(x, y)=0
\end{aligned}
$$

Definition 2

$$
\Lambda\left(x, y, t, t_{0}\right)=\frac{1}{\left(4 \pi\left|t-t_{0}\right|\right)^{n / 2}} e^{\frac{|x-y|^{2}}{4\left(t_{0}-t\right)}}
$$

We have $\Lambda_{t}=\Delta \Lambda$:

$$
\begin{aligned}
\Lambda_{t} & =-\frac{n}{2} \frac{1}{\left(t-t_{0}\right)} \Lambda+\frac{|x-y|^{2}}{4\left(t-t_{0}\right)^{2}} \Lambda \\
\Lambda_{x^{i}} & =\frac{x^{i}-y^{i}}{2\left(t_{0}-t\right)} \Lambda \\
& \Longrightarrow \Lambda_{x^{i} x^{i}}=\frac{\left(x^{i}-y^{i}\right)^{2}}{4\left(t_{0}-t\right)} \Lambda+\frac{1}{2\left(t_{0}-t\right)} \Lambda \\
& \Longrightarrow \Delta \Lambda=-\frac{n}{2} \frac{1}{\left(t-t_{0}\right)} \Lambda+\frac{|x-y|^{2}}{4\left(t-t_{0}\right)^{2}} \Lambda .
\end{aligned}
$$

Heat Kernel:

$$
K(x, y, t)=\frac{1}{(4 \pi t)^{n / 2}} e^{\frac{-|x-y|^{2}}{4 t}}
$$

It's easy to check $K_{t}=\Delta K$.
Suppose $u: \mathbb{R}^{n} \mapsto \mathbb{R}$ is bounded and C^{0}, then

$$
\bar{u}(x, t)=\int_{\mathbb{R}^{n}} K(x, y, t) u(y) d y
$$

is C^{∞} on $\mathbb{R}^{n} \times(0, \infty)$ and $\bar{u}_{t}=\Delta \bar{u}$.

