Lecture 20

April 29th, 2004

Difference Quotients and Sobolev spaces

Define

$$
\Delta_{i}^{h} u:=\frac{u\left(x+h \cdot \mathbf{e}_{\mathbf{l}}\right)-u(x)}{h}, \quad h \neq 0 .
$$

Lemma. Let Ω be a bounded domain in \mathbb{R}^{n}, and $u \in W^{1, p}(\Omega)$, for some $1 \leq p<\infty$. Then for any $\Omega^{\prime} \Subset \Omega$ such that $\operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)>h$ holds

$$
\left\|\Delta_{i}^{h} u\right\|_{L^{p}\left(\Omega^{\prime}\right)} \leq\left\|D_{i} u\right\|_{L^{p}(\Omega)} .
$$

Proof.

$$
\begin{aligned}
\left|\Delta_{i}^{h} u\right|=\left|\frac{u\left(x+h \cdot \mathbf{e}_{\mathbf{l}}\right)-u(x)}{h}\right| & \leq \frac{1}{h} \int_{0}^{h}\left|\mathrm{D}_{i} u\left(x_{1}, \ldots, x_{i}+\zeta, \ldots, x_{n}\right)\right| d \zeta \\
& \leq \frac{1}{h}\left\{\int_{0}^{h} 1^{q}\right\}^{\frac{1 q}{}}\left\{\int_{0}^{h}\left|\mathrm{D}_{i} u\left(x_{1}, \ldots, x_{i}+\zeta, \ldots, x_{n}\right)\right|^{p} d \zeta\right\}^{\frac{1}{p}} \Rightarrow \\
\left|\Delta_{i}^{h} u\right|^{p} & \leq h^{\frac{p}{q}-p} \cdot \int_{0}^{h}\left|\mathrm{D}_{i} u\left(x_{1}, \ldots, x_{i}+\zeta, \ldots, x_{n}\right)\right|^{p} d \zeta \\
& =\frac{1}{h} \cdot \int_{0}^{h}\left|\mathrm{D}_{i} u\left(x_{1}, \ldots, x_{i}+\zeta, \ldots, x_{n}\right)\right|^{p} d \zeta \Rightarrow \\
\int_{\Omega^{\prime}}\left|\Delta_{i}^{h} u\right|^{p} & \leq \frac{1}{h} \cdot \int_{\Omega^{\prime}} \int_{0}^{h}\left|\mathrm{D}_{i}\right|^{p} d \zeta d \mathbf{x}=\frac{1}{h} \cdot \int_{0}^{h} \int_{\Omega}^{\prime}\left|\mathrm{D}_{i}\right|^{p} d \mathbf{x} d \zeta \\
& =\frac{1}{h} \int_{0}^{h}\left\|\mathrm{D}_{i} u\right\|_{L^{p}\left(\Omega^{\prime}\right)}=\left\|\mathrm{D}_{i} u\right\|_{L^{p}\left(\Omega^{\prime}\right)} \leq\left\|\mathrm{D}_{i} u\right\|_{L^{p}(\Omega)},
\end{aligned}
$$

where we applied Fubini's Theorem in order to switch order of integration.

Conversely we have

Lemma. Let $u \in L^{p}(\Omega)$ for some $1 \leq p<\infty$ and suppose $\Delta_{i}^{h} u \in L^{p}\left(\Omega^{\prime}\right)$ with $\left\|\Delta_{i}^{h} u\right\|_{L^{p}\left(\Omega^{\prime}\right)} \leq K$ for all $\Omega^{\prime} \Subset \Omega$ and $0<|h|<\operatorname{dist}\left(\Omega^{\prime}, \Omega\right)$. Then the weak derivative satisfies $\left\|D_{i} u\right\|_{L^{p}(\Omega)} \leq K$. Consequently if this holds for all $i=1, \ldots, n$ then $u \in W^{1, p}(\Omega)$.

Proof. We will make use of

Alouglou's Theorem. A bounded sequence in a separable, reflexive Banach space has a weakly convergent subsequence.

A topological space is called separable if it contains a countable dense set.
A Banach space is called reflexive if $\left(B^{\star}\right)^{\star}=B$.
A sequence $\left\{x_{n}\right\}$ in a Banach space is said to converge weakly to x when $\lim _{n \rightarrow \infty} F\left(x_{n}\right) \rightarrow F(x)$ for all linear functionals $F \in B^{\star}$. This is sometimes denoted $\lim _{n \rightarrow \infty} x_{n} \rightharpoonup x$.

Example: Let $\ell^{2}:=\left\{\left(a_{1}, a_{2}, \ldots\right): \sum_{i=1}^{\infty} a_{i}^{2}<\infty\right\}$. Consider the sequence $\left\{x_{i}:=(0, \ldots, 0,1,0, \ldots)\right\}$ $\subseteq \ell^{2}$. Any bounded linear functional on ℓ^{2} will be some linear combination of the linear functionals F_{j}, defined by $F_{j}\left(a_{1}, \ldots\right)=a_{j}$ (each such linear combination corresponds exactly to a point in ℓ^{2}. That makes sense, indeed by the Riesz Representation Theorem $\left(\ell^{2}\right)^{\star}=\ell^{2}$ (note ℓ^{2} is a Hilbert space not just a Banach space as it has an inner product structure).). For any such $F=\left(a_{1}, \ldots\right)$, $\lim _{i \rightarrow \infty} F\left(x_{i}\right)=\lim _{i \rightarrow \infty} a_{i}=0$. So x_{i} converges to the 0 vector weakly, though certainly not strongly: by Fourier Theory each point in ℓ^{2} corresponds to a periodic function on $[0,1]$, i.e an element of $L^{2}\left(S^{1}\right)$, and of course $\lim _{n \rightarrow \infty} \exp (n 2 \pi \sqrt{-1} z) \nrightarrow 0(z)$.

We come back to the proof. For the Banach space $B=L^{p}(\Omega), B^{\star}=L^{q}(\Omega)$ with $\frac{1}{p}+\frac{1}{q}=1$. This can be seen directly: If $F \in\left(L^{p}(\Omega)\right)^{\star}$, then exists f such that $F(g)=\int_{\Omega} g \cdot f, \quad \forall g \in L^{p}(\Omega)$, and this will be bounded iff $f \in L^{q}(\Omega)$. So we get an identification $F \in\left(L^{p}(\Omega)\right)^{\star} \cong L^{q}(\Omega)$.

By Alouglou's Theorem there exists a sequence $\left\{h_{m}\right\} \rightarrow 0$ with $\Delta_{i}^{h_{m}} u \rightharpoonup v \in L^{p}(\Omega)$. In other words

$$
\int_{\Omega} \psi \cdot \Delta_{i}^{h_{m}} u \rightarrow \int_{\Omega} \psi \cdot v \in L^{p}(\Omega), \quad \forall \psi \in L^{q}(\Omega)
$$

And in particular for any $\psi \in \mathcal{C}_{0}^{1}(\Omega)$ (which is dense in $L^{q}(\Omega)$ so will suffice to look at such ψ as will become clear ahead)

$$
\begin{aligned}
\int_{\Omega} \psi \Delta_{i}^{h_{m}} u & =\int_{\Omega} \psi \frac{1}{h}\left(u\left(x+h \cdot \mathbf{e}_{\mathbf{l}}\right)-u(x)\right) d \mathbf{x} \\
& =\frac{1}{h} \int_{\Omega} \psi\left(x-h \mathbf{e}_{\mathbf{i}}\right) u(x) d \mathbf{x}-\frac{1}{h} \int_{\Omega} \psi(x) u(x) d \mathbf{x} \\
& =\int_{\Omega} \frac{1}{h}\left(\psi\left(x-h \mathbf{e}_{\mathbf{i}}\right)-\psi(x)\right) u(x) d \mathbf{x} \\
& =\int_{\Omega}-\Delta_{i}^{h} \psi(x) u(x) d \mathbf{x} \xrightarrow{h \rightarrow 0} \int_{\Omega}-\mathrm{D}_{i} \psi(x) u(x) d \mathbf{x}
\end{aligned}
$$

since ψ is continuously differetiable. Altogether

$$
\int_{\Omega} \psi \cdot v \in L^{p}(\Omega)=\int_{\Omega}-\mathrm{D}_{i} \psi(x) u(x) d \mathbf{x},
$$

which by definition means v is the weak derivative of u in the direction of the x_{i} axis, or simply the undistinctive notation $v=\mathrm{D}_{i} u$.

We also get the desired estimate, using the Fatou Lemma $\int \lim \inf \leq \lim \inf \int$

$$
\int_{\Omega}\left|\mathrm{D}_{i} u\right|^{p} d \mathbf{x}=\int_{\Omega} \liminf \left|\Delta_{i}^{h} u\right|^{p} d \mathbf{x} \leq \liminf \int_{\Omega}\left|\Delta_{i}^{h} u\right|^{p} d \mathbf{x} \leq K^{p}
$$

i.e $\left\|\mathrm{D}_{i} u\right\|_{L^{p}(\Omega)} \leq K$.

L^{2} Theory

Consider the second order equation in divergence form

$$
L u \equiv L(u):=\mathrm{D}_{i}\left(a^{i j} \mathrm{D}_{j} u\right)+b^{i} \mathrm{D}_{i} u+c \cdot u=f,
$$

with $a^{i j}, b^{i}, c \in L^{1}(\Omega)$ (integrable coefficients).
We call $u \in W^{1,2}(\Omega)$ a weak solution of the equation if

$$
\forall v \in \mathcal{C}_{0}^{1}(\Omega) \quad-\int_{\Omega} a^{i j} \mathrm{D}_{j} u \mathrm{D}_{i} v+\int_{\Omega}\left(b^{i} \mathrm{D}_{i} u+c u\right) v=\int_{\Omega} f v .
$$

Elliptic Regularity

Let $u \in W^{1,2}(\Omega)$ be a weak solution of $L u=f$ in Ω, and assume

- L strictly elliptic with $\left(a^{i j}\right)>\gamma \cdot I, \gamma>0$
- $a^{i j} \in \mathcal{C}^{0,1}(\Omega)$
- $b^{i}, c \in L^{\infty}(\Omega)$
- $f \in L^{2}(\Omega)$

Then for any $\Omega^{\prime} \Subset \Omega, \quad u \in W^{2,2}\left(\Omega^{\prime}\right)$ and

$$
\|u\|_{W^{2,2}\left(\Omega^{\prime}\right)} \leq C\left(\left\|a^{i j}\right\|_{C^{0,1}(\Omega)},\|b\|_{C^{0}(\Omega)},\|c\|_{C^{0}(\Omega)}, \lambda, \Omega^{\prime}, \Omega, n\right) \cdot\left(\|u\|_{W^{1,2}(\Omega)}+\|f\|_{L^{2}(\Omega)}\right)
$$

Note $L^{\infty}(\Omega)$ stands for bounded functions on Ω while $\mathcal{C}^{0}(\Omega)$ are functions that are also continuous (Ω being bounded).

Proof. Start with the definition of u being a solution in the weak sense, $\forall v \in \mathcal{C}_{0}^{1}(\Omega)$:

$$
\int_{\Omega} a^{i j} \mathrm{D}_{j} u \mathrm{D}_{i} v=\int_{\Omega}\left(b^{i} \mathrm{D}_{i} u+c-f\right) v .
$$

and take difference quotients, that is replace v with $\Delta^{-h} v$.

$$
\int_{\Omega} a^{i j} \mathrm{D}_{j} u \mathrm{D}_{i}\left(\Delta^{-h} v\right)=\int_{\Omega}\left(b^{i} \mathrm{D}_{i} u+c-f\right)\left(\Delta^{-h} v\right) .
$$

Taking $-h$ is a technicality that will unravel its reason later on, and we really mean $\Delta_{k}^{-h} v$ for some $k \in\{1, \ldots, n\}$ and then eventually repeat the computation for all k in that range. This will become clear as well. Finally our goal will be to use the Chain Rule and move the difference quotient operator onto u under the integral sign and get uniform bounds on $\Delta^{h} \mathrm{D} u$ and in this way get a priori $W^{2,2}(\Omega)$ estimates.

The Chain Rule gives

$$
\begin{aligned}
& \Delta^{h}\left(a^{i j} \mathrm{D}_{j} u\right)= \\
& \frac{1}{h}\left(a^{i j} u\left(x+h \cdot \mathbf{e}_{\mathbf{k}}\right) \mathrm{D}_{j} u\left(x+h \cdot \mathbf{e}_{\mathbf{k}}\right)-\left\{a^{i j}(x)-a^{i j}\left(x+h \cdot \mathbf{e}_{\mathbf{k}}\right)+a^{i j}\left(x+h \cdot \mathbf{e}_{\mathbf{k}}\right)\right\} \mathrm{D}_{j} u(x)\right) \\
& =a^{i j} u\left(x+h \cdot \mathbf{e}_{\mathbf{k}}\right) \Delta^{h} \mathrm{D}_{j} u-\Delta^{h} a^{i j} \mathrm{D}_{j} u .
\end{aligned}
$$

And applied to our previous equation, a short calculation verifies that we can 'integrate by part' WRT $\Delta^{h_{-}}$

$$
\begin{gathered}
\int_{\Omega} a^{i j} \mathrm{D}_{j} u \mathrm{D}_{i}\left(\Delta^{-h} v\right)=\int_{\Omega} \Delta^{h}\left(a^{i j} \mathrm{D}_{j} u\right) \mathrm{D}_{i} v \Rightarrow \\
\int_{\Omega} a^{i j} u\left(x+h \cdot \mathbf{e}_{\mathbf{k}}\right) \Delta^{h} \mathrm{D}_{j} u \mathrm{D}_{i} v=\int_{\Omega}-\Delta^{h} a^{i j} \mathrm{D}_{j} u \mathrm{D}_{i} v+\int_{\Omega}\left(b^{i} \mathrm{D}_{i} u+c-f\right)\left(\Delta^{-h} v\right) \Rightarrow \\
\left|\int_{\Omega} a^{i j} u\left(x+h \cdot \mathbf{e}_{\mathbf{k}}\right) \Delta^{h} \mathrm{D}_{j} u \mathrm{D}_{i} v\right| \leq\left\|\Delta^{h} a^{i j} \mathrm{D}_{j} u\right\|_{L^{2}(\Omega)}\left\|\mathrm{D}_{i} v\right\|_{L^{2}(\Omega)}+ \\
+\left\|b^{i} \mathrm{D}_{i} u+c u-f\right\|_{L^{2}(\Omega)}\left\|\Delta^{-h} v\right\|_{L^{2}(\Omega)},
\end{gathered}
$$

where we have used the Hölder Inequality for $p=q=2$. This in turn can be bounded by

$$
\begin{aligned}
\leq & \left\|a^{i j}\right\|_{C^{0,1}(\Omega)}\|\mathrm{D} u\|_{L^{2}(\Omega)}\|\mathrm{D} v\|_{L^{2}(\Omega)}+ \\
& +\left(\left\|b^{i}\right\|_{L^{\infty}(\Omega)}\|\mathrm{D} u\|_{L^{2}(\Omega)}+\|c\|_{L^{\infty}(\Omega)}\|u\|_{L^{2}(\Omega)}+\|f\|_{L^{2}(\Omega)}\right)\|\mathrm{D} v\|_{L^{2}(\Omega)} \\
\leq & C\left(\|u\|_{W^{1,2}(\Omega)}+\|f\|_{L^{2}(\Omega)}\right) \cdot\|\mathrm{D} v\|_{L^{2}(\Omega)}
\end{aligned}
$$

where we have used the Hölder Inequality for $p=1, q=\infty$, i.e a simple bounded integration $\operatorname{argument}\left(\mathrm{e} . \mathrm{g}\|c u\|_{L^{2}(\Omega)}=\left(\int c^{2} \cdot|u|^{2}\right)^{\frac{1}{2}} \leq\left(\sup |c|^{2} \int_{O}|u|^{2}\right)^{\frac{1}{2}}\right)$, and $\Delta^{h} a^{i j} \rightarrow \mathrm{D}_{k} a^{i j}$ as $a^{i j} \mathcal{C}^{0,1}(\Omega)$.

Take a cut-off function $\eta \in \mathcal{C}_{0}^{1}(\Omega), 0 \leq|\eta| \leq 1,\left.\eta\right|_{\Omega^{\prime}}=1$. We now choose a special $v: v:=\eta^{2} \Delta^{h} u$. From uniform ellipticity $\left(a^{i j} \zeta_{i} \zeta_{j} \geq \lambda|\zeta|^{2}\right)$

$$
\lambda \int_{\Omega}\left|\eta \mathrm{D} \Delta^{h} u\right|^{2} \leq \int_{\Omega} \eta^{2} a^{i j}\left(x+h \cdot \mathbf{e}_{\mathbf{k}}\right) \mathrm{D}_{i} \Delta^{h} u \mathrm{D}_{j} \Delta^{h} u .
$$

Now

$$
\mathrm{D}_{i} v=2 \eta \mathrm{D}_{i} \eta \Delta^{h} u+\eta^{2} \mathrm{D}_{i} \Delta^{h} u
$$

which we substitute into our previous inequality,

$$
\begin{aligned}
\int_{\Omega} \eta^{2} a^{i j}\left(x+h \cdot \mathbf{e}_{\mathbf{k}}\right) \mathrm{D}_{j} \Delta^{h} u \mathrm{D}_{j} \Delta^{h} u \leq & \int_{\Omega} a^{i j}\left(x+h \cdot \mathbf{e}_{\mathbf{k}}\right) \mathrm{D}_{j} \Delta^{h} u \cdot\left(\mathrm{D}_{i} v-2 \eta \mathrm{D}_{i} \eta \Delta^{h} u\right) \\
\leq & C\left(\|u\|_{W^{1,2}(\Omega)}+\|f\|_{L^{2}(\Omega)}\right)\|\mathrm{D} v\|_{L^{2}(\Omega)}+ \\
& +C^{\prime}\left\|\left(\mathrm{D} \Delta^{h} u\right) \eta\right\|_{L^{2}(\Omega)}\left\|\mathrm{D} \eta \Delta^{h} u\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

again by the Hölder Inequality. Now since $\eta \leq 1$

$$
\left\|\mathrm{D}_{i} v\right\|_{L^{2}(\Omega)} \leq C^{\prime \prime}\left(\left\|\mathrm{D}_{i} \eta \Delta^{h} u\right\|_{L^{2}(\Omega)}+\left\|\mathrm{D} \Delta^{h} u\right\|_{L^{2}(\Omega)}\right)
$$

Combining all the above and again using $\eta \leq 1$,

$$
\begin{aligned}
\lambda \int_{\Omega}^{\prime}\left|\eta \mathrm{D} \Delta^{h} u\right|^{2} \leq & C\left(\|u\|_{W^{1,2}(\Omega)}+\|f\|_{L^{2}(\Omega)}\right) \cdot C^{\prime \prime}\left(\left\|\mathrm{D} \eta \Delta^{h} u\right\|_{L^{2}\left(\Omega^{\prime}\right)}+\left\|\mathrm{D} \Delta^{h} u\right\|_{L^{2}\left(\Omega^{\prime}\right)}\right) \\
& +C^{\prime}\left\|\left(\mathrm{D} \Delta^{h} u\right)\right\|_{L^{2}\left(\Omega^{\prime}\right)}\left\|\mathrm{D} \eta \Delta^{h} u\right\|_{L^{2}\left(\Omega^{\prime}\right)} \\
\leq & c\left(\|u\|_{W^{1,2}(\Omega)}+\|f\|_{L^{2}(\Omega)}+\left\|\mathrm{D} \eta \Delta^{h} u\right\|_{L^{2}\left(\Omega^{\prime}\right)}\right) \cdot\left\|\left(\mathrm{D} \Delta^{h} u\right)\right\|_{L^{2}\left(\Omega^{\prime}\right)} \\
& +c\left(\|u\|_{W^{1,2}(\Omega)}+\|f\|_{L^{2}(\Omega)}\right) \cdot\left\|\mathrm{D} \eta \Delta^{h} u\right\|_{L^{2}\left(\Omega^{\prime}\right)} .
\end{aligned}
$$

Using the AM-GM Inequality $a b=\sqrt{\frac{1}{\epsilon} a^{2} \cdot \epsilon b^{2}} \leq \frac{1}{2}\left(\frac{1}{\epsilon} a^{2}+\epsilon b^{2}\right)$ for the first term and the inequality $(a+b) c \leq \frac{1}{2}(a+b+c)^{2}$ for the second

$$
\begin{aligned}
\lambda \int_{\Omega^{\prime}}\left|\eta \mathrm{D} \Delta^{h} u\right|^{2} \leq & \frac{1}{\epsilon} c^{2}\left(\|u\|_{W^{1,2}(\Omega)}+\|f\|_{L^{2}(\Omega)}+\left\|\mathrm{D} \eta \Delta^{h} u\right\|_{L^{2}\left(\Omega^{\prime}\right)}\right)^{2}+\epsilon\left\|\left(\mathrm{D} \Delta^{h} u\right)\right\|_{L^{2}\left(\Omega^{\prime}\right)}^{2} \\
& +c\left(\|u\|_{W^{1,2}(\Omega)}+\|f\|_{L^{2}(\Omega)}+\left\|\mathrm{D} \eta \Delta^{h} u\right\|_{L^{2}\left(\Omega^{\prime}\right)}\right)^{2} .
\end{aligned}
$$

Choose any $0<\epsilon<\lambda / 2$. Then subtract the second term on the first line of the RHS from the LHS to get

$$
\begin{aligned}
\left\|\eta \mathrm{D} \Delta^{h} u\right\|_{L^{2}\left(\Omega^{\prime}\right)}^{2} \leq & c\left(\|u\|_{W^{1,2}(\Omega)}+\|f\|_{L^{2}(\Omega)}+\left\|\mathrm{D} \eta \Delta^{h} u\right\|_{L^{2}\left(\Omega^{\prime}\right)}\right)^{2} \Rightarrow \\
\left\|\eta \mathrm{D} \Delta^{h} u\right\|_{L^{2}\left(\Omega^{\prime}\right)} \leq & \leq c\left(\|u\|_{W^{1,2}(\Omega)}+\|f\|_{L^{2}(\Omega)}+\left\|\mathrm{D} \eta \Delta^{h} u\right\|_{L^{2}\left(\Omega^{\prime}\right)}\right) \\
& \leq c\left(\|u\|_{W^{1,2}(\Omega)}+\|f\|_{L^{2}(\Omega)}+\sup _{\Omega}|\mathrm{D} \eta| \cdot\left\|\Delta^{h} u\right\|_{L^{2}\left(\Omega^{\prime}\right)}\right) \\
& \leq c\left(\|u\|_{W^{1,2}(\Omega)}+\|f\|_{L^{2}(\Omega)}\right) \cdot\left(1+\sup _{\Omega}|\mathrm{D} \eta|\right)
\end{aligned}
$$

since $\left\|\Delta^{h} u\right\|_{L^{2}(\Omega)} \leq\|\mathrm{D} u\|_{L^{2}(\Omega)} \leq\|u\|_{W^{1,2}(\Omega)} \leq\|u\|_{W^{1,2}(\Omega)}+\|f\|_{L^{2}(\Omega)}$ where we have applied the first Lemma to $u \in W^{1,2}(\Omega)$. Now we are done as we can choose η such that first $\left.\eta\right|_{\Omega^{\prime}}=1$ (for the LHS !) and second $|\mathrm{D} \eta| \leq \operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)$ (for the RHS) and so

$$
\left\|1 \cdot \mathrm{D} \Delta^{h} u\right\|_{L^{2}\left(\Omega^{\prime}\right)}^{2} \leq c\left(\|u\|_{W^{1,2}(\Omega)}+\|f\|_{L^{2}(\Omega)}\right)
$$

independently of h. So by our second Lemma the uniform boundedness of the difference quotients of $\mathrm{D} u$ in $L^{2}\left(\Omega^{\prime}\right)$ implies $\mathrm{D} u \in W^{1,2}\left(\Omega^{\prime}\right) \quad \Rightarrow \quad u \in W^{2,2}\left(\Omega^{\prime}\right)$ and we have the desired estimate for its $W^{2,2}\left(\Omega^{\prime}\right)$ norm by the above inequality combined with the Lemma.

Now that $u \in W^{2,2}\left(\Omega^{\prime}\right)$ then the our original equation holds in the usual sense

$$
L u=a^{i j} \mathrm{D}_{i} j u+\mathrm{D}_{i} a^{i j} \mathrm{D}_{j} u+b^{i} \mathrm{D}_{i} u+c \cdot u=f
$$

a.e!

