Lecture 19

April 27th, 2004

We give a slightly different proof of

Theorem. Let Ω a bounded domain in \mathbb{R}^{n}, and $1 \leq p<\infty$.

$$
W_{0}^{1, p}(\Omega) \subseteq \mathcal{C}^{0, \alpha}(\Omega), \quad \alpha=1-\frac{n}{p}, \quad p>n
$$

and $\exists C(n, p, \Omega)$ such that for $u \in W_{0}^{1, p}(\Omega)$

$$
\|u\|_{C^{0, \alpha}(\Omega)} \leq C \cdot\|u\|_{W^{1, p}(\Omega)}, \quad \forall p>n
$$

in other words

$$
\sup _{\Omega}|u|+|u|_{C^{0, \alpha}(\Omega)} \leq C \cdot\left\{\|u\|_{L^{p}(\Omega)}+\|\nabla u\|_{L^{p}(\Omega)}\right\}, \quad \forall p>n
$$

Note the inequality is stronger than the one we stated in the previous lecture.
Proof. We take $u \in \mathcal{C}_{0}^{1}(\Omega)$ as before, WLOG (density argument). Extend u to \mathbb{R}^{n} trivially, i.e set $u=0$ on $\mathbb{R}^{n} \backslash \Omega$. Let $x, y \in \Omega$ and $\sigma=|x-y|$ and let p be the point $\frac{x+y}{2}$. Put $B=B(p, \sigma)$ and take $z \in B$. By the Fundamental Theorem of Calculus

$$
\begin{aligned}
u(x)-u(z) & =\int_{0}^{1} \frac{d}{d t} u(x+(1-t) z) d t \\
& =\int_{0}^{1} \nabla u(x+t(z-x)) \cdot(z-x) d t
\end{aligned}
$$

Integrating over $z \in B$

$$
\begin{aligned}
\left|\int_{B} u(z) d \mathbf{z}-\operatorname{Vol}(B) u(x)\right| & \leq \int_{B} \int_{0}^{1}|\nabla u(x+t(z-x))| \cdot|z-x| d t d \mathbf{z} \\
& \leq 2 \sigma \int_{B} \int_{0}^{1}|\nabla u(x+t(z-x))| d t d \mathbf{z} \\
& =2 \sigma \int_{0}^{1}\left(\int_{B}|\nabla u(x+t(z-x))| d \mathbf{z}\right) d t
\end{aligned}
$$

Change variables to

$$
\bar{z}:=x+t(z-x), \quad \rightarrow \quad d \overline{\mathbf{z}}=t^{n} d \mathbf{z} .
$$

For $z \in B(x, \sigma) \Rightarrow \bar{z} \in B(x, t \sigma)=: \bar{B}$. In the new variable we have now

$$
\left|\int_{B} u d \mathbf{z}-\operatorname{Vol}(B) u(x)\right| \leq 2 \sigma \int_{0}^{1} t^{-n}\left(\int_{\bar{B}}|\nabla u(\bar{z})| d \overline{\mathbf{z}}\right) d t
$$

By the Hölder Inequality for q such that $\frac{1}{p}+\frac{1}{q}=1$

$$
\begin{aligned}
\begin{aligned}
&\left.\int_{\bar{B}}|\nabla u(\bar{z})| d \overline{\mathbf{z}}\right) d t \leq\left\{\int_{\bar{B}} 1^{q}\right\}^{\frac{1}{q}} \cdot\left\{\int_{\bar{B}}|\nabla u(w)|^{p} d \mathbf{w}\right\}^{\frac{1}{p}} \\
&=\operatorname{Vol}(B(t \sigma))^{\frac{1}{q}}\|\nabla u\|_{L^{p}(\bar{B})} \\
& \leq \operatorname{Vol}(B(t \sigma))^{\frac{1}{q}}\|\nabla u\|_{L^{p}(\Omega)} \\
&=\omega_{n}^{\frac{1}{q}} t^{\frac{n}{q}} \sigma^{\frac{n}{q}}\|\nabla u\|_{L^{p}(\Omega)} \quad \Rightarrow \\
&\left|\int_{B} u d \mathbf{z}-\operatorname{Vol}(B) u(x)\right| \leq 2 \sigma^{1+\frac{n}{q}} \omega_{n}^{\frac{1}{q}}\left(\int_{0}^{1} t^{-n} \cdot t^{\frac{n}{q}} d t\right)\|\nabla u\|_{L^{p}(\Omega)} .
\end{aligned}
\end{aligned}
$$

Divide now throughout by $\operatorname{Vol}(B)=\omega_{n} \sigma^{n}$

$$
\begin{aligned}
\left|\int_{B} u(z) d \mathbf{z}-u(x)\right| & \leq \sigma^{1+\frac{n}{q}-n} \omega_{n}^{\frac{1}{q}-1}\left(\int_{0}^{1} t^{-n\left(1-\frac{1}{q}\right)} d t\right)\|\nabla u\|_{L^{p}(\Omega)} \\
& =\sigma^{1-\frac{n}{p}} \omega_{n}^{-\frac{1}{p}}\left(\int_{0}^{1} t^{-n\left(\frac{1}{p}\right)} d t\right)\|\nabla u\|_{L^{p}(\Omega)}
\end{aligned}
$$

and the integral evaluates to $\left.\left[\frac{t^{-\frac{n}{p}+1}}{1-\frac{n}{p}}\right]\right|_{0} ^{1}$ which is finite iff $p>n$. We thus conclude

$$
\left|\int_{B} u(z) d \mathbf{z}-u(x)\right| \leq c(n, p) \cdot \sigma^{1-\frac{n}{p}}\|\nabla u\|_{L^{p}(\Omega)} .
$$

We repeat the above computation with x replaced by y and use the triangle inequality, which gives us

$$
|u(x)-u(y)| \leq 2 c(n, p) \cdot|x-y|^{1-\frac{n}{p}}| | \nabla u \|_{L^{p}(\Omega)}
$$

and subsequently

$$
\frac{|u(x)-u(y)|}{|x-y|^{1-\frac{n}{p}}} \leq 2 c(n, p) \cdot\|\nabla u\|_{L^{p}(\Omega)} .
$$

And concluding

$$
\|u\|_{C^{\alpha}(\bar{\Omega})}=\|u\|_{L^{\infty}(\Omega)}+\sup _{x \neq y \in \Omega} \frac{|u(x)-u(y)|}{|x-y|^{1-\frac{n}{p}}} \leq C(n, p, \Omega) \cdot\|\nabla u\|_{L^{p}(\Omega)} .
$$

since both \mathcal{C}^{0} and L^{∞} norms coincide, being just $\sup _{\Omega}$, and finally because by our above computations we can also bound the L^{∞} norm in terms of the L^{p} norm of $\mathrm{D} u$

$$
|u(x)| \leq 2 c(n, p, \operatorname{diam}(\Omega)) \cdot\|\nabla u\|_{L^{p}(\Omega)}
$$

so $\|u\|_{L^{\infty}(\Omega)}$ is bounded by the same RHS .

Compactness Theorems

Lemma. Let Ω be a bounded domain in \mathbb{R}^{n}, and $1 \leq p<\infty$. Let S be a bounded set in $L^{p}(\Omega)$.
In other words,

$$
\forall u \in S, \quad\|u\|_{L^{p}(\Omega)} \leq M_{S} .
$$

Suppose $\forall \epsilon>0, \quad \exists \delta>0$ such that

$$
\forall u \in S, \forall|z|<\delta \quad \int_{\Omega}|u(y+z)-u(y)|^{p} d \mathbf{y}<\epsilon
$$

Then S is precompact in $L^{p}(\Omega)$ (denoted $S \Subset L^{p}(\Omega)$), i.e every sequence of functions in S has convergent subsequence ("subconverges"), or equivalently \bar{S} is compact.

This is an Arzelà-Ascoli type theorem: bounded equicontinuous family is precompact. We just have to show somehow that the integral equicontinuity-type condition implies equicontinuity. Proof. Mollify u as done previously in the course

$$
u_{h}=\int_{\mathbb{R}^{n}} \rho_{h}(x-y) u(y) d \mathbf{y}, \quad \rho_{h}(z)=\frac{1}{h^{n}} \rho\left(\frac{|z|}{h}\right)
$$

Set $S_{h}:=\left\{u_{h}, u \in S\right\}$.
We compute

$$
\begin{aligned}
u_{h}=\int_{\mathbb{R}^{n}} \rho_{h}(x-y) u(y) d \mathbf{y} & =\int_{\mathbb{R}^{n}} \rho_{h}(x-y)|u(y)| d \mathbf{y} \\
& =\int_{\mathbb{R}^{n}} \rho_{h}^{\frac{1}{q}} \rho_{h}^{\frac{1}{p}}|u(y)| d \mathbf{y} \\
& \leq\left\{\int_{\mathbb{R}^{n}} \rho_{h}\right\}^{\frac{1}{q}} \cdot\left\{\rho_{h}|u(y)|^{\frac{1}{p}} d \mathbf{y}\right. \\
& \leq\|u\|_{L^{p}(\Omega)}
\end{aligned}
$$

Now

$$
\begin{aligned}
u_{h}(x+z)-u_{h}(x) & =\int_{\mathbb{R}^{n}}\left[\rho_{h}(x+z-y)-\rho_{h}(x-y)\right] u(y) d \mathbf{y} \\
& =\int_{\mathbb{R}^{n}}\left[\rho_{h}(x-y)[u(y+z)-u(y)] d \mathbf{y}\right.
\end{aligned}
$$

and the same estimate as above yields

$$
u_{h}(x+z)-u_{h}(x) \leq 1 \cdot\left\{\int_{\Omega}|u(y+z)-u(y)|^{p}\right\}^{\frac{1}{p}} \leq \epsilon^{\frac{1}{p}}
$$

Now by our assumption for $\delta>0$ small enough and $|z|<\delta$ we will attain any desired ϵ on the RHS. Note $\int_{\mathbb{R}^{n}} \rho_{h}=1$ is fixed for all h by our choice of ρ. Hence by definition we see that S_{h} is an equicontinuous family, and bounded wrt the $L^{p}(\Omega)$ norm as inside S, hence by the Arzelà-Ascoli theorem S_{h} is precompact in the space $L^{p}(\Omega)$.

Now $\lim _{h \rightarrow 0} S_{h} \rightarrow S$ as we have seen in previous lectures. So as the above estimates are independent of h, S is precompact itself in $L^{p}(\Omega)$.

Theorem (Kodrachov) Let Ω be bounded in \mathbb{R}^{n}.

$$
\begin{array}{lll}
\text { (I) } & p<n: & W_{0}^{1, p}(\Omega) \subseteq L^{q}(\Omega)
\end{array} \quad \forall 1 \leq q<\frac{n p}{n-p} .
$$

and moreover $W_{0}^{1, p}(\Omega)$ is compactly embedded in each of the RHSs.

We have then a curious situation- $\quad W_{0}^{1, p}(\Omega) \subseteq L^{\frac{n p}{n-p}} \subseteq L^{q} \quad$ for $1 \leq q<\frac{n p}{n-p}$ but the first inclusion is only continuous! Only for q stricly smaller than $\frac{n p}{n-p}$ is it compact... And similarly for the case $p>n$.

For the sake of clarity: we say $B_{1} \subseteq B_{2}$ is compactly embedded if for every bounded set S in B_{1}, $i(S) \subseteq B_{2}$ is precompact, where $i: B_{1} \rightarrow B_{2}$ is the inclusion map.

Proof. Case $q=1$. By the density argument we mentioned repeatedly we assume wLOG $S \subseteq \mathcal{C}_{0}^{1}(\Omega)$ and that $M_{S}=1$. Let $u \in S$. Then $\|u\|_{L^{p}(\Omega)} \leq 1,\|\mathrm{D} u\|_{L^{p}(\Omega)} \leq 1$. Hence $\|u\|_{L^{1}(\Omega)}=\int_{\Omega}|u(x)| \leq$ $\left\{\int_{\Omega} 1\right\}^{\frac{1}{q}}\left\{\int_{\Omega}|u|^{p}\right\}^{\frac{1}{p}} \leq \operatorname{Vol}(\Omega)^{\frac{1}{q}} \cdot 1$, in other words S is also bounded in L^{1}. Once we show the condition of the Lemma holds then we will have precompactness in $L^{1}(\Omega)$. And indeed

$$
\begin{array}{r}
u(y+z)-u(y)=\int_{0}^{1} \frac{d u}{d t}(y+t z) d t=\int_{0}^{1} \nabla u(y+t z) \cdot z d t \Rightarrow \\
\int_{\Omega}|u(y+z)-u(y)| d \mathbf{y} \leq|z| \operatorname{Vol}(\Omega)^{\frac{1}{q}}| | \nabla u \|_{L^{p}(\Omega)} \leq c|z| .
\end{array}
$$

Case $1<q<\frac{n p}{n-p}$. We try to find some estimates for the $L^{q}(\Omega)$ norm using the indispensible Hölder Inequality. Naturally we will be able to take care of boundedness of all such q together if we allude to the fact that the $\Lambda^{\frac{n p}{n-p}}(\Omega)$ is bounded, indeed the L^{p} norms are increasing in p-first choose λ such that $q \lambda+q(1-\lambda) \frac{n-p}{n p}=1$

$$
\begin{aligned}
\left\{\int|u|^{q}\right\}= & \left\{\int|u|^{q \lambda} \cdot|u|^{q(1-\lambda)}\right\} \leq\left\{\int\left(|u|^{q \lambda}\right)^{\frac{1}{q \lambda}}\right\}^{q \lambda} \cdot\left\{\int\left(|u|^{q(1-\lambda)}\right)^{\frac{n p}{n-p} \frac{1}{q(\lambda-1)}}\right\}^{q(1-\lambda)\left(\frac{n-p}{n p}\right)} \Rightarrow \\
& \|u\|_{L^{q}(\Omega)} \leq\|u\|_{L^{1}(\Omega)}^{\lambda} \cdot\|u\|_{L^{\frac{n}{n-p}}(\Omega)}^{1-\lambda} \\
& \leq\|u\|_{L^{1}(\Omega)}^{\lambda} \cdot c \cdot\|\nabla u\|_{L^{p}(\Omega)}^{1-\lambda} \\
& \leq\|u\|_{L^{1}(\Omega)}^{\lambda} \cdot c \cdot 1 \\
& \leq c(n, p, \operatorname{Vol}(\Omega)),
\end{aligned}
$$

where we applied our Theorem from the previous lecture. Now note that we are done using the $q=1$ case: S is bounded in $L^{q}(\Omega)$ and hence a subsequence converges in $L^{q}(\Omega)$, but then by the above inequality it will also converge in $L^{q}(\Omega)$!

Case $p>n$. By the Theorem of the previous lecture $W_{0}^{1, p}(\Omega) \subseteq \mathcal{C}^{0, \alpha}(\bar{\Omega})$ continuously. But now $\mathcal{C}^{0, \alpha}(\bar{\Omega}) \subseteq \mathcal{C}^{0, \beta}(\bar{\Omega})$ compactly for any $0 \leq \beta<\alpha$ as mentioned in one of the previous lectures.

Remark. Replacing $W_{0}^{1, p}(\Omega)$ by $W^{1, p}(\Omega)$ (the completion of $\mathcal{C}^{1}(\Omega)$ WRT the $W^{1, p}$ norm) in the above embedding theorems require that the domain be Lipschitz, i.e $\partial \Omega$ is of class $\mathcal{C}^{0,1}$ (this is a local requirement).

