Lecture 16

April $13^{\text {th }}, 2004$

Elliptic regularity

\mathcal{H} itherto we have always assumed our solutions already lie in the appropriate $\mathcal{C}^{k, \alpha}$ space and then showed estimates on their norms in those spaces. Now we will avoid this a priori assumption and show that they do hold a posteriori. This is important for the consistency of our discussion. Precisely what we would like to show is -
\mathcal{A} priori regularity. Let $u \in \mathcal{C}^{2}(\Omega)$ be a solution of Lu $=f$ and assume $0<\alpha<1$. We do not assume $c(x) \leq 0$ but we do assume all the other assumptions on L in the previous Theorem hold. If $f \in \mathcal{C}^{\alpha}(\Omega)$ then $u \in \mathcal{C}^{2, \alpha}(\Omega)$

- Here we mean the \mathcal{C}^{α} norm is locally bounded, i.e for every point exists a neighborhood where the \mathcal{C}^{α}-norm is bounded. Had we written $\mathcal{C}^{\alpha}(\bar{\Omega})$ we would mean a global bound on $\sup _{x, y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}$ (as in the footnote if Lecture 14).
- This result will allow us to assume in previous theorems only \mathcal{C}^{2} regularity on (candidate) solutions instead of assuming $\mathcal{C}^{2, \alpha}$ regularity.

Proof. Let u be a solution as above. Since the Theorem is local in nature we take any point in Ω and look at a ball B centered there contained in Ω. We then consider the Dirichlet problem

$$
\begin{array}{clll}
L_{0} v & = & f^{\prime} & \text { on } \\
v & = & B & \text { on } \\
\partial B .
\end{array}
$$

where $L_{0}:=L-c(x)$ and $f^{\prime}(x):=f(x)-c(x) \cdot u(x)$. This Dirichlet problem is on a ball, with " $c \leq 0$ ", uniform elliptic and with coefficients in \mathcal{C}^{α}. Therefore we have uniqueness and existence of a solution v in $\mathcal{C}^{2, \alpha}(B) \cap \mathcal{C}^{0}(\bar{B})$. But u satisfies $L u=f$ or equivalently $L_{0} u=f^{\prime}$ on all of Ω so
in particular on \bar{B}. By uniqueness on B therefore we have $\left.u\right|_{\bar{B}}=v$, and so u is $\mathcal{C}^{2, \alpha}$ smooth there. As this is for any point and all balls we have $u \in \mathcal{C}^{2, \alpha}(\Omega)$.

It is insightful to note at this point that these results are optimal under the above assumptions. Indeed need \mathcal{C}^{2} smoothness (or atleast $\mathcal{C}^{1,1}$) in order to define $2^{\text {nd }}$ derivatives wRT L ! If one takes u in a larger function space, i.e weaker regularity of u, and defines $L u=f$ in a weak sense then need more regularity on coefficients of L ! Under the assumption of \mathcal{C}^{α} continuity on the coefficients indeed we are in an optimal situation.

Higher a priori regularity. Let $u \in \mathcal{C}^{2}(\Omega)$ be a solution of $L u=f$ and $0<\alpha<1$. We do not assume $c(x) \leq 0$ but we assume uniformly elliptic and that all coefficients are in $\mathcal{C}^{k, \alpha}$. If $f \in \mathcal{C}^{k, \alpha}$ then $u \in \mathcal{C}^{k+2, \alpha}$. If $f \in \mathcal{C}^{\infty}$ then $u \in \mathcal{C}^{\infty}$.

Proof. $k=0$ was the previous Theorem.

The case $k=1$. The proof relies in an elegant way on our previous results with the combination of the new idea of using difference quotients. We would like to differentiate the u three times and prove we get a \mathcal{C}^{α} function. Differentiating the equation $L u=f$ once would serve our purpose but it can not be done naïvely as it would involve 3 derivatives of u and we only know that u has two. To circumvent this hurdle we will take two derivatives of the difference quotients of u, which we define by (let $\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{\mathbf{n}}$ denote the unit vectors in \mathbb{R}^{n})

$$
\Delta^{h} u:=\frac{u\left(x+h \cdot \mathbf{e}_{1}\right)-u(x)}{h}=: . \frac{u^{h}(x)-u(x)}{h} .
$$

Namely we look at

$$
\Delta^{h} L u=\frac{L u\left(x+h \cdot \mathbf{e}_{\mathbf{1}}\right)-L u(x)}{h}=\frac{f\left(x+h \cdot \mathbf{e}_{\mathbf{l}}\right)-f(x)}{h}=\Delta^{h} u f .
$$

Note $\Delta^{h} v(x) \xrightarrow{h \rightarrow 0} \mathrm{D}_{l} v(x)$ if $v \in \mathcal{C}^{1}$ (which we don't know a priori in our case yet).
Expanding our equation in full gives

$$
\begin{gathered}
\frac{1}{h}\left[\left(a^{i j}\left(x+h \cdot \mathbf{e}_{\mathbf{l}}\right)-a^{i j}(x)+a^{i j}(x)\right) \mathrm{D}_{i j} u^{h}-a^{i j}(x) \mathrm{D}_{i j} u(x)\right. \\
\left.+b^{i}\left(x+h \cdot \mathbf{e}_{\mathbf{l}}\right) \mathrm{D}_{i} u\left(x+h \cdot \mathbf{e}_{\mathbf{l}}\right)-b^{i}(x) \mathrm{D}_{i} u(x)+c\left(x+h \cdot \mathbf{e}_{\mathbf{l}}\right) u\left(x+h \cdot \mathbf{e}_{\mathbf{l}}\right)-c(x) u(x)\right] \\
=\Delta^{h} a^{i j} \mathrm{D}_{i j} u^{h}-a^{i j} \mathrm{D}_{i j} \Delta^{h} u+\Delta^{h} b^{i} \mathrm{D}_{i} u^{h}+b^{i} \mathrm{D}_{i} \Delta^{h} u+\Delta^{h} c \cdot u^{h}+c \cdot \Delta^{h} u=\Delta^{h} f .
\end{gathered}
$$

or succintly

$$
L \Delta^{h} u=f^{\prime}:=\Delta^{h} f-\Delta^{h} a^{i j} \cdot \mathrm{D}_{i j} u^{h}-\Delta^{h} b_{i} \cdot \mathrm{D}_{i} u^{h}-\Delta^{h} c \cdot u^{h}
$$

where $u^{h}:=u\left(x+h \cdot \mathbf{e}_{\mathbf{1}}\right)$.
We now analyse the regularity of the terms. $f \in \mathcal{C}^{1, \alpha}$ so so is $\Delta^{h} f$, but not (bounded) uniformly WRT h (i.e $\mathcal{C}^{1, \alpha}$ norm of $\Delta^{h} f$ may go to ∞ as h decreases). On the otherhand $\Delta^{h} f \in \mathcal{C}^{\alpha}(\Omega)$ uniformly wRT $h(\forall h>0): \Delta^{h} u f=\frac{f\left(x+h \cdot \mathbf{e}_{1}\right)-f(x)}{h}=\mathrm{D}_{l} f(\bar{x})$ for some \bar{x} in the interval, and RHS has a uniform \mathcal{C}^{α} bound as $f \in \mathcal{C}^{1, \alpha}$ on all Ω ! (needed as \bar{x} can be arbitrary).

For the same reason $\Delta^{h} a^{i j}, \Delta^{h} b_{i}, \Delta^{h} c \in \mathcal{C}^{\alpha}(\Omega)$. By the $k=0$ case we know $u \in \mathcal{C}^{2, \alpha}(\Omega)$ and not just in $\mathcal{C}^{2}(\Omega) . \Leftrightarrow \mathrm{D}_{i j} u^{h} \in \mathcal{C}^{\alpha}(\Omega)$ uniformly.

Remark. We take a moment to describe what we mean by uniformity. We say a function $g_{h}=g(h, \cdot): \Omega \rightarrow \mathbb{R}$ is uniformly bounded in \mathcal{C}^{α} wRT h when $\forall \Omega^{\prime} \Subset \Omega$ exists $c(\Omega)$ such that $\left|g_{h}\right|_{C^{\alpha}\left(\Omega^{\prime}\right)} \leq c(\Omega)$. Note this definition goes along with our local definition of a function being in $\mathcal{C}^{\alpha}(\Omega)$ (and not in $\mathcal{C}^{\alpha}(\bar{\Omega})!$).

Putting the above facts together we now see that both sides of the equation $L \Delta^{h} u=f^{\prime}$ are in $\mathcal{C}^{\alpha}(\Omega)$. And they are also in $\mathcal{C}^{\alpha}\left(\Omega^{\prime}\right)$ with RHS uniformly so with constant $c\left(\Omega^{\prime}\right)$.

By the interior Schauder estimate, $\forall \Omega^{\prime \prime} \Subset \Omega^{\prime}$ and for each h

$$
\left\|\Delta^{h} u\right\|_{C^{2}, \alpha}\left(\Omega^{\prime \prime}\right) \leq c\left(\gamma, \Lambda, \Omega^{\prime \prime}\right) \cdot\left(\left\|\Delta^{h} u\right\|_{C^{0}, \Omega^{\prime}(+)}\left\|f^{\prime}\right\|_{C^{\alpha, \Omega^{\prime}}()}\right) \leq \tilde{c}\left(\gamma, \Lambda, \Omega^{\prime \prime}, \Omega^{\prime}, \Omega,\|u\|_{C^{1}(\Omega)},\right.
$$

which is independent of $h!$ If we assume the Claim below taking the limit $h \rightarrow 0$ we get $\mathrm{D}_{l} u \in$ $\mathcal{C}^{2, \alpha}\left(\Omega^{\prime \prime}\right), \forall l=1, \ldots, n \quad u \in \mathcal{C}^{3, \alpha}\left(\Omega^{\prime \prime}\right) . \forall \Omega^{\prime \prime} \Subset \Omega^{\prime} \Subset \Omega \Leftrightarrow u \in \mathcal{C}^{3, \alpha}(\Omega)$.

Claim. $\left\|\Delta^{h} g\right\|_{C^{\alpha}(A)} \leq c$ independently of $h \quad \Leftrightarrow \quad D_{l} g \in \mathcal{C}^{\alpha}(A)$.

First we we show $g \in \mathcal{C}^{0,1}(A)$. This is tantamount to the existence of $\lim _{h \rightarrow 0} \Delta^{h} g(x)$ (since if it exists it equals $\mathrm{D}_{l} u \gamma(x)$ - that's how we define the first l-directional derivative at x). Now $\left\{\Delta^{h} g\right\}_{h>0}$ is family of uniformly bounded (in $\mathcal{C}^{0}(A)$) and equicontinuous functions (from the uniform Hölder constant). So by the Arzelà-Ascoli Theorem exists a sequence $\left\{\Delta^{h_{i}} g\right\}_{i=1}^{\infty}$ converging to some $\tilde{w} \in \mathcal{C}^{\alpha}(A)$ in the $\mathcal{C}^{\beta}(A)$ norm for any $\beta<\alpha$. But as we remarked above \tilde{w} necessarily equals $\mathrm{D}_{l} g$ by definition.

Second, we show $g \in \mathcal{C}^{1}(A)$ (i.e such that derivative is continuous not just bounded) and actually $\in \mathcal{C}^{1, \alpha}(A):$

$$
c \geq\left\|\Delta^{h} g\right\|_{C^{\alpha}(A)} \geq \lim _{h \rightarrow 0} \frac{\Delta^{h} g(x)-\Delta^{h} g(y)}{|x-y|^{\alpha}}=\frac{\mathrm{D}_{l} g(x)-\mathrm{D}_{l} g(y)}{|x-y|^{\alpha}}=\left|\mathrm{D}_{l} g\right|_{C^{\alpha}(A)}
$$

where we used that c is independent of h.

The case $k \geq 2$. Let $k=2$. By the $k=1$ case we can legitimately take 3 derivatives as $u \in \mathcal{C}^{3, \alpha}(\Omega)$. One has

$$
L\left(\mathrm{D}_{l} u\right)=f^{\prime}:=\mathrm{D}_{l} f-\mathrm{D}_{l} a^{i j} \cdot \mathrm{D}_{i j} u-\mathrm{D}_{l} b_{i} \cdot \mathrm{D}_{i} u-\mathrm{D}_{l} c \cdot u
$$

with $\mathrm{D}_{l} u, f^{\prime} \in \mathcal{C}^{1, \alpha}(\Omega)$. So again by the $k=1$ case we have now $\mathrm{D}_{l} u \in \mathcal{C}^{3, \alpha}(\Omega)$, hence $u \in \mathcal{C}^{4, \alpha}(\Omega)$. The instances $k \geq 3$ are in the same spirit.

Boundary regularity

Let Ω be a $\mathcal{C}^{2, \alpha}$ domain, i.e whose boundary is locally the graph of a $\mathcal{C}^{2, \alpha}$ function. Let L be uniformly elliptic with \mathcal{C}^{α} coefficients and $c \leq 0$.

Theorem. Let $f \in \mathcal{C}^{\alpha}(\Omega), \varphi \in \mathcal{C}^{2, \alpha}(\partial \Omega), u \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}^{0}(\bar{\Omega})$ satisfying $\begin{array}{ccccc}L u & = & f & \text { on } & \Omega, \\ u & = & \varphi & \text { on }\end{array} \quad \partial \partial \Omega$. with $0<\alpha<1$. Then $u \in \mathcal{C}^{2, \alpha}(\bar{\Omega})$.

Proof. Our previous results give $u \in \mathcal{C}^{2, \alpha}(\Omega)$ and we seek to extend it to those points in $\partial \Omega$. Note that even though $u=\varphi$ on $\partial \Omega$ and φ is $\mathcal{C}^{2, \alpha}$ there this does not give the same property for u. It just gives that u is $\mathcal{C}^{2, \alpha}$ in directions tangent to $\partial \Omega$, but not in directions leading to the boundary.

The question is local: restrict attention to $B\left(x_{0}, R\right) \cap \bar{\Omega}$ for each $x_{0} \in \partial \Omega$. We choose a $\mathcal{C}^{2, \alpha}$ homeomorphism $\Psi_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ sending $B\left(x_{0}, R\right) \cap \partial \Omega$ to a portion of a (flat) hyperplane and $\partial B\left(x_{0}, R\right) \cap \Omega$ to the boundary of half a disc. We then choose another $\mathcal{C}^{2, \alpha}$ homeomorphism $\Psi_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ sending the whole half disc into a disc ($=$ a ball). Therefore $\Psi_{2} \circ \Psi_{1}$ maps our original boundary portion into a portion of the boundary of a ball.

Similarly to previous computations of this sort we define the induced operator \tilde{L} on the induced domain $\Psi_{2} \circ \Psi_{1}\left(B\left(x_{0}, R\right) \cap \Omega\right)$ and define the induced functions $\tilde{u}, \tilde{\varphi}, \tilde{f}$ and we get a new Dirichlet problem with all norms of our original objects equivalent to those of our induced ones. Note that still $\tilde{c}:=c \circ \Psi_{1}{ }^{-1} \circ \Psi_{2}{ }^{-1} \leq 0$, therefore by our theory exists a unique solution $v \in \mathcal{C}^{2, \alpha}\left(\Psi_{2} \circ\right.$ $\left.\Psi_{1}\left(B\left(x_{0}, R\right) \cap \Omega\right) \cup \Psi_{2} \circ \Psi_{1}\left(B\left(x_{0}, R\right) \cap \partial \Omega\right)\right) \cap \mathcal{C}^{0}\left(\Psi_{2} \circ \Psi_{1}\left(\overline{B\left(x_{0}, R\right)} \cap \bar{\Omega}\right)\right)$ for the induced Dirichlet problem . Now our \tilde{u} also solves it. So by uniqueness $\tilde{u}=v$ and \tilde{u} has $\mathcal{C}^{2, \alpha}$ regularity as the induced boundary portion, and by pulling back through $\mathcal{C}^{2, \alpha}$ diffeomorphisms we get that so does u.

Remark. The assumption $c \leq 0$ is not necessary although modifying the proof is non-trivial without this assumption (exercise). We needed it in order to be able to use our existence result. But since we already assume a solution exists we may use some of our previous results which do not need $c \leq 0$ and which secure $\mathcal{C}^{2, \alpha}$ regularity upto the boundary.

