Lecture 14

April 6, th 2004

Extending interior Schauder estimates to flat boundary part

Theorem. $u \in \mathcal{C}^{2, \alpha}(\Omega \cap T), L u=f, u=0$ on T, with $0<\alpha<1$. Assume coefficients are bounded in $\mathcal{C}^{2, \alpha}(\Omega \cap T)$ as well as uniformly elliptic. Then $\forall \Omega^{\prime} \cap T^{\prime} \mathbb{C} \Omega \cap T, \exists c=c\left(\Lambda, n, \Omega^{\prime}, \Omega, T^{\prime}, T\right)$ such that

$$
\|u\|_{C^{2, \alpha}\left(\Omega^{\prime} \cap T^{\prime}\right)} \leq c\left(\|u\|_{C^{0}(\Omega \cap T)}+\|f\|_{C^{\alpha}(\Omega \cap T)}\right) .
$$

Proof. As in the last remark we see that our proof consisted of perturbing the equation at any $x_{0} \in \Omega^{\prime}$ and relying on our constant coefficients estimates and interpolation methods. Both of these hold upto the flat boundary from our previous work.

Global Schauder estimates

Theorem. Let Ω be a $\mathcal{C}^{2, \alpha}$ domain and $u \in \mathcal{C}^{2, \alpha}(\bar{\Omega})^{\star}$ with $0<\alpha<1$. Let L be uniformly elliptic with $\mathcal{C}^{\alpha}(\bar{\Omega})$ bounds on coefficients. Let

$$
\begin{array}{cc}
L u=f, & f \in \mathcal{C}^{\alpha}(\bar{\Omega}), \\
u=\varphi & \text { on } \partial \Omega .
\end{array}
$$

Then $\exists c=c(\Omega, \Lambda, n)$ such that

$$
\|u\|_{C^{2, \alpha}(\Omega)} \leq c\left(\|u\|_{C^{0}(\Omega)}+\|f\|_{C^{\alpha}(\Omega)}+\|\varphi\|_{C^{2, \alpha}(\partial \Omega)}\right) .
$$

* We note that Gilbarg-Trudinger intend by this notation locally Hölder while we will take it henceforth to mean globally Hölder in the sense that we assume $\sup _{x_{0} \neq y_{0} \in \bar{\Omega}} \frac{\mathrm{D}^{2} u\left(x_{0}\right)-\mathrm{D}^{2} u\left(y_{0}\right)}{\left|x_{0}-y_{0}\right|^{\alpha}}$ is finite.

Here we let $\|\varphi\|_{C^{2, \alpha}(\partial \Omega)}:=\inf _{\tilde{\varphi}: \Omega \rightarrow \mathbb{R}}\|\tilde{\varphi}\|_{C^{2, \alpha}(\Omega)}$.
Proof. It is enough to prove for the case of zero boundary values: if we can solve the Dirichlet problem

$$
\begin{array}{ccccc}
L v & = & f-L \varphi=: f^{\prime} \in \mathcal{C}^{\alpha} & \text { on } & \bar{\Omega}, \\
v & = & 0 & \text { on } & \partial \Omega .
\end{array}
$$

we can also solve our original one by setting $v+\varphi$ solves the original equation. And if we have the above announced estimates for v then by the triangle inequality (for the relevant norms) and the uniform ellipticity (which gives $\|L \varphi\|_{C^{\alpha}(\Omega)} \leq c \cdot\|\varphi\|_{C^{2, \alpha}(\Omega)}$) the same estimates will hold for u, possibly with a different constant.

So indeed we may assume $\varphi=0$.
By definition of a $\mathcal{C}^{2, \alpha}$ domain $\exists \Psi, \Psi^{-1} \in \mathcal{C}^{2, \alpha}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right)$ mapping each small portion of the boundary of Ω, say $B\left(x_{0}, R\right) \cap \partial \Omega$ for $x_{0} \in \partial \Omega$ to flat boundary. We set as in computations in the past $\tilde{u}:=u \circ \Psi^{-1}$ and then $\mathrm{D} \tilde{u}=\mathrm{D} u \circ \Psi^{-1} ノ, \mathrm{D}^{2} \tilde{u}=\mathrm{D}^{2} u \cdot \Psi^{-1} \prime+\mathrm{D} u \cdot \mathrm{D}^{2} \Psi^{-1}$. These computations convince us once more that the relevant norms on a, b, c and $\tilde{a}, \tilde{b}, \tilde{c}$ are equivalent using $\Psi, \Psi^{-1} \in \mathcal{C}^{2, \alpha}$ (e.g we find $\|\tilde{b}\|_{C^{\alpha}(\Omega)} \leq\|b\|_{C^{\alpha}(\Omega)}\left(|\Psi|_{C^{1, \alpha}(+)}|\Psi|_{C^{2, \alpha}(\Omega)} \leq C \cdot \Lambda\right)$.

We have for the flat boundary

$$
\|\tilde{u}\|_{C^{2, \alpha}\left(\Psi\left(B\left(x_{0}, \frac{1}{2} R\right) \cap \bar{\Omega}\right)\right)} \leq c\left(\|\tilde{u}\|_{C^{0}\left(\Psi\left(B\left(x_{0}, R\right) \cap \bar{\Omega}\right)\right)}+\|\tilde{f}\|_{C^{\alpha}\left(\Psi\left(B\left(x_{0}, R\right) \cap \bar{\Omega}\right)\right)}\right) .
$$

Now by our above work we know this holds also for u in $B\left(x_{0}, R\right) \cap \bar{\Omega}$

$$
\|u\|_{C^{2, \alpha}\left(B\left(x_{0}, \frac{1}{2} R\right) \cap \bar{\Omega}\right)} \leq c\left(\|u\|_{C^{0}\left(B\left(x_{0}, R\right) \cap \bar{\Omega}\right)}+\|f\|_{C^{\alpha}\left(B\left(x_{0}, R\right) \cap \bar{\Omega}\right)}\right) .
$$

Now we patch up the estimates over a countable cover of $\partial \Omega$ by small balls $\left\{B\left(x_{i}, \frac{1}{2} R_{i}\right)\right\}$. $\partial \Omega$ being compact we may choose a finite subcover say after relabeling $\left\{B\left(x_{i}, \frac{1}{2} R_{i}\right)\right\}_{i=1}^{N}$. Finally we adjoin to these estimates an interior estimate for some Ω^{\prime} such that $\Omega \backslash \cup_{i=1}^{N} B\left(x_{i}, \frac{1}{2} R_{i}\right) \Subset \Omega^{\prime} \Subset \Omega$. And having this we are done by analysing the different cases that might arise in a similar fashion to previous proofs.

Banach Spaces

\mathcal{L} et V be a vector space equipped with a norm $\|\cdot\|: V \rightarrow \mathbb{R}$ i.e i) $\|x\| \geq 0$ with equality $\Leftrightarrow x=0 ; i i)\|\alpha x\|=|\alpha|\|x\| ; i i i) \Delta$ - inequality. With a norm we have a metric $d(x, y):=\|x-y\|$ and we can talk about topology induced from it, convergence etc.

Cauchy sequence: $\left\{x_{i}\right\}$ such that $d\left(x_{n}, x_{m}\right) \xrightarrow{N \rightarrow \infty} 0, \forall m, n \geq N$.
Banach space: a normed space complete WRT the norm metric \Leftrightarrow every Cauchy sequence converges (wRT the norm metric) in V (limit in V).

We mention in passing a few examples.

- The Bolzano-Weierstrass theorem showing $\left(\mathbb{R}^{n},|\cdot|\right)$ is complete carries over to show finite dimensional normed spaces are Banach.
- $\quad\left(\mathcal{C}^{0}(\Omega),\|\cdot\|_{L^{1}}\right)$ is incomplete, so is not Banach;
- On the other handwhile $\left(\mathcal{C}^{0}(\Omega),\|\cdot\|_{C^{0}(\Omega)}\right)$ and in general $\left(\mathcal{C}^{k, \alpha}(\Omega),\|\cdot\|_{C k, \alpha}\right)$ are Banach, as can be demonstrated using the Arzelà-Ascoli theorem [cf. Peterson, Riemannian Geometry, Chapter 10].
- Sobolev spaces are yet another example.

Contraction Mapping Theorem. Let \mathcal{B} a Banach space and $T: \mathcal{B} \rightarrow \mathcal{B}$ a contraction mapping (wrT to the norm metric). Then T has a unique fixed point.

Proof. Here the assumption translates into $\|T x-T y\| \leq \theta \cdot\|x-y\|$ for $\theta \in[0,1)$. The idea is to look at the sequence $\left\{x_{n}:=T^{n} x_{0}\right\}$ and show it is Cauchy using the Δ-inquality. Let $x \in V$ be its limit; we see that

$$
T x=T \lim x_{n}=\lim T x_{n}(\text { by continuity of } T!)=\lim x_{n+1}=x .
$$

As for uniqueness, if x, y are two fixed points,

$$
\|x-y\|=\|T x-T y\| \leq \theta\|x-y\| \Rightarrow\|x-y\|=0
$$

and by the norm properties $x=y$.

