Lecture 23

May $11^{\text {th }}, 2004$

L^{p} Theory

Take f any measurable function on a domain $\Omega \subseteq \mathbb{R}^{n}$ and define the distribution function of f $\mu_{f}(t):=|\{x \in \Omega:|f(x)|>t\}|$. We use alternatively $|\cdot|$ and $\lambda(\cdot)$ to denote the Lebesgue measure.

Proposition. Assume $f \in L^{p}(\Omega)$ for some $p>0$.

$$
\begin{aligned}
& \text { I) } \quad \mu_{f}(t) \leq t^{-p} \int_{\Omega}|f|^{p} d \mathbf{x} . \\
& \text { II) } \quad \int_{\Omega}|f|^{p} d \mathbf{x}=p \int_{0}^{\infty} t^{p-1} \mu_{f}(t) d t .
\end{aligned}
$$

In order for the second equation to make sense we need the distribution function to be measurable and indeed it is as f itself is.

Proof. First

$$
\int_{\Omega}|f|^{p} d \mathbf{x} \geq \int_{\{f>t\}}|f|^{p} d \mathbf{x} \geq t^{p} \lambda(\{x: f(x)>t\})=t^{p} \mu_{f}(t) .
$$

Second, assume first $p=1$. By Fubini's Theorem one can interchange order of integration in

$$
\int_{\Omega}|f|=\int_{\Omega} \int_{0}^{|f(x)|} d t d \mathbf{x}=\int_{0}^{\infty} \int_{\Omega} \mathbb{I}_{\{x \in \Omega: f(x)>t\}} d \mathbf{x} d t=\int_{0}^{\infty} \mu_{f}(t) d t .
$$

For general p

$$
\mu_{f^{p}}(t)=\left|\left\{x: f^{p}(x)>t\right\}\right|=|\{x: f(x)>\sqrt[p]{t}\}|=\mu_{f}(\sqrt[p]{t})=
$$

and so

$$
p \int_{0}^{\infty} t^{p-1} \mu_{f}(t) d t=\int_{0}^{\infty} \mu_{f^{p}}\left(t^{p}\right) d\left(t^{p}\right)=\int_{\Omega}|f|^{p} d \mathbf{x}
$$

Marcinkiewicz Interpolation Theorem. Let $1 \leq q<r<\infty$ and let $T: L^{q}(\Omega) \cap L^{r}(\Omega) \longrightarrow$ $L^{q}(\Omega) \cap L^{r}(\Omega)$ be a linear map. Suppose there exist constants T_{1}, T_{2} such that

$$
\forall f \in L^{q}(\Omega) \cap L^{r}(\Omega) \quad \mu_{T f}(t) \leq\left(\frac{T_{1}\|f\|_{L^{q}(\Omega)}}{t}\right)^{q}, \quad \mu_{T f}(t) \leq\left(\frac{T_{2}\|f\|_{L^{r}(\Omega)}}{t}\right)^{r}, \quad \forall t>0
$$

Then for any exponent in between $q<p<r, T$ can be extended to a map $L^{p}(\Omega) \longrightarrow L^{p}(\Omega)$ for all $f \in L^{q}(\Omega) \cap L^{p}(\Omega)$. And moreover,

$$
\|T f\|_{L^{p}(\Omega)} \leq\left[\frac{p}{q-p}\left(2 T_{1}\right)^{q}+\frac{p}{r-p}\left(2 T_{2}\right)^{r}\right]^{\frac{1}{p}}\|f\|_{L^{p}(\Omega)}
$$

Otherwise stated: weak $(q, q) \&$ weak $(r, r) \Longrightarrow \operatorname{strong}(p, p) p \in(q, r)$, though not for the endpoints, the constants blow-up there (we say an operator is strong (p_{1}, p_{2}) if it maps functions in $L^{p_{1}}$ to functions in $L^{p_{2}}$. We say it is weak $\left(p_{1}, p_{2}\right)$ if its domain is in $L^{p_{1}}$ and its distribution function satisfies the first inequality in the assumptions above with q replaced by p_{2}).

Proof. Take $f \in L^{q}(\Omega) \cap L^{r}(\Omega)$, and let $s>0$. Let

$$
\begin{aligned}
f_{1} & := \begin{cases}f(x) & |f(x)|>s \\
0 & |f(x)| \leq s\end{cases} \\
f_{2} & := \begin{cases}0 & |f(x)|>s \\
f(x) & |f(x)| \leq s\end{cases}
\end{aligned}
$$

indeed one notices that $f=f_{1}+f_{2}$. The trick will be to let this splitting of f vary by letting s itself vary. So $|T f| \leq\left|T f_{1}\right|+\left|T f_{2}\right|$. If $T f(x)>t$ at some point $x \in \Omega$ then either $T f_{1}>t / 2$ or $T f_{2}>t / 2$. This translates into

$$
\begin{aligned}
\mu_{T f}(t) & \leq \mu_{T f_{1}}(t / 2)+\mu_{T f_{2}}(t / 2) \\
& \leq\left(\frac{T_{1}}{t / 2}\right)^{q} \int_{\Omega}\left|f_{1}\right|^{q}+\left(\frac{T_{2}}{t / 2}\right)^{r} \int_{\Omega}\left|f_{2}\right|^{r}
\end{aligned}
$$

We choose the smaller exponent q for the terms where f is large $\left(f_{1}\right)$ and larger one r for where f is small $\left(f_{2}\right)$, intuitively. This will make sense in a moment when it will be clear how this guarantees that our two integrals - with different integration domains - are finite. By the Proposition we have

$$
\int_{\Omega}|T f|^{p} d \mathbf{x}=p \int_{0}^{\infty} t^{p-1} \mu_{T f}(t) d t
$$

and once we substitute in the above inequality we get

$$
\begin{aligned}
\int_{\Omega}|T f|^{p} d \mathbf{x} & \leq p \int_{0}^{\infty} t^{p-1}\left[\left(\frac{T_{1}}{t / 2}\right)^{q} \int_{\Omega}\left|f_{1}\right|^{q}+\left(\frac{T_{2}}{t / 2}\right)^{r} \int_{\Omega}\left|f_{2}\right|^{r}\right] d t \\
& =p\left(2 T_{1}\right)^{q} \int_{0}^{\infty}\left(\int_{\{|f|>s\}}\left|f_{1}\right|^{q}\right) t^{p-1-q} d t+p\left(2 T_{2}\right)^{r} \int_{0}^{\infty}\left(\int_{\{|f| \leq s\}}\left|f_{2}\right|^{r}\right) t^{p-1-r} d t
\end{aligned}
$$

We chose $s>0$ arbitrary in the above construction of f_{i}. In particular we may let it vary. This is a neat trick. We set $s=t$ to get

$$
\begin{aligned}
& p\left(2 T_{1}\right)^{q} \int_{0}^{\infty}\left(\int_{\{|f|>s\}}|f|^{q}\right) s^{p-1-q} d s+p\left(2 T_{2}\right)^{r} \int_{0}^{\infty}\left(\int_{\{|f| \leq s\}}|f|^{r}\right) s^{p-1-r} d s \\
& =p\left(2 T_{1}\right)^{q} \int_{\Omega}|f|^{q} d \mathbf{x} \int_{0}^{|f|} s^{p-1-q} d s+p\left(2 T_{2}\right)^{r} \int_{\Omega}|f|^{r} d \mathbf{x} \int_{|f|}^{\infty} s^{p-1-r} d s \\
& =\left(2 T_{1}\right)^{q} \frac{p}{q-p} \int_{\Omega}|f|^{p}+\left(2 T_{2}\right)^{r} \frac{p}{r-p} \int_{\Omega}|f|^{p} .
\end{aligned}
$$

Altogether

$$
\int_{\Omega}|T f|^{p} d \mathbf{x} \leq\left[\frac{p}{q-p}\left(2 T_{1}\right)^{q}+\frac{p}{r-p}\left(2 T_{2}\right)^{r}\right] \cdot \int_{\Omega}|f|^{p}
$$

Remark. In Gilbarg-Trudinger, p.229, a different constant is achieved which is slightly stronger than ours (as can be seen using the AM-GM Inequality). This is done by introducing an additional constant A, letting $t=A s$ and later choosing A appropriately.

Back to the Newtonian Potential

We defined the Newtonian Potential of f

$$
\omega \equiv N f:=\int_{\Omega} \Gamma(x-y) f(y) d \mathbf{y}=\frac{1}{n(2-n) \omega_{n}} \int_{\Omega} \frac{1}{|x-y|^{n-2}} d \mathbf{y} .
$$

Claim. (Young's Inequality) $N: L^{p}(\Omega) \longrightarrow L^{p}(\Omega)$. Moreover continuously so- $\exists C$ such that $\|N f\|_{L^{p}(\Omega)} \leq C\|f\|_{L^{p}(\Omega)}$.

Remark. For $p=2$ we proved in the past much more: $\Delta(N f)=f \in L^{2}(\Omega) \Rightarrow N f \in W^{2,2}(\Omega)$. Also our previous estimates on the Newtonian Potential can actually be made to extend our Claim to $W^{1, p}(\Omega)$ regularity. These estimates can not give though $W^{2, p}(\Omega)$ estimates (see the beginning of the next Lecture).

Proof.

$$
\begin{aligned}
\omega: & =\Gamma \star f=\int_{\Omega} \Gamma(x-y) f(y) d \mathbf{y} \\
& =\int_{\Omega} f(y) \Gamma(x-y)^{\frac{1}{p}} \Gamma(x-y)^{1-\frac{1}{p}} d \mathbf{y} \\
& \leq\left\{\int_{\Omega}\left|f(y)^{p} \Gamma(x-y)\right| d \mathbf{y}\right\}^{\frac{1}{p}}\left\{\int_{\Omega}|\Gamma(x-y)| d \mathbf{y}\right\}^{1-\frac{1}{p}} \\
& \leq C \cdot\left\{\int_{\Omega}\left|f(y)^{p} \Gamma(x-y)\right| d \mathbf{y}\right\}^{\frac{1}{p}} .
\end{aligned}
$$

since $\Gamma(x-y) \sim \frac{1}{|x-y|^{n-1}}$ and therefore is integrable over \mathbb{R}^{n}. Therefore we have an upper bound on ω^{p} which we can integrate

$$
\begin{aligned}
\int_{\Omega} \omega^{p} d \mathbf{x} & \leq \int_{\Omega} C^{p}\left\{\int_{\Omega}\left|f(y)^{p} \Gamma(x-y)\right| d \mathbf{y}\right\} d \mathbf{x} \\
& =C^{p} \int_{\Omega} \int_{\Omega}|f(y)|^{p}|\Gamma(x-y)| d \mathbf{x} d \mathbf{y} \\
& =C^{p} \int_{\Omega}|f(y)|^{p}\left(\int_{\Omega}|\Gamma(x-y)| d \mathbf{x}\right) d \mathbf{y} \\
& \leq \tilde{C} \int_{\Omega}|f(y)|^{p} d \mathbf{y}
\end{aligned}
$$

where we applied Fubini's Theorem.

Theorem. Let $f \in L^{p}(\Omega)$ for some $1<p<\infty$ and let $\omega=N f$ be the Newtonian Potential of f. Then $\omega \in W^{2, p}(\Omega)$ and $\Delta w=f$ a.e. and

$$
\left\|D^{2} w\right\|_{L^{p}(\Omega)} \leq c(n, p, \Omega) \cdot\|f\|_{L^{p}(\Omega)}
$$

For $p=2$ we have even

$$
\int_{\mathbb{R}^{n}}\left|D^{2} \omega\right|^{2}=\int_{\Omega} f^{2}
$$

Proof. We prove just for $p=2$, leaving the hard work for the next and last lecture. First we assume $f \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. From long time ago: $f \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right) \Rightarrow \omega \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\Delta \omega=f$ (Hölder Theory for the Newtonian Potential).

Let $B:=B_{R}$ a ball containing supp $f \quad \Rightarrow$

$$
\begin{equation*}
\int_{B_{R}}(\mathrm{D} \omega)^{2}=\int_{B_{R}} f^{2}=\int_{\Omega} f^{2} \tag{1}
\end{equation*}
$$

We embark now on our main computation

$$
\begin{aligned}
\int_{B_{R}}\left|\mathrm{D}^{2} \omega\right|^{2}=\int_{B_{R}} \mathrm{D}_{i j} \omega \mathrm{D}_{i j} \omega \text { (summation) } & =-\int_{B_{R}} \mathrm{D}_{j}\left(\mathrm{D}_{i j} \omega\right) \mathrm{D}_{i} \omega+\int_{\partial B_{R}} \mathrm{D}_{i j} \omega \mathrm{D}_{i} \omega \nu_{j} d \theta \\
& =-\int_{B_{R}} \mathrm{D}_{i}\left(\mathrm{D}_{j j} \omega\right) \mathrm{D}_{i} \omega+\int_{\partial B_{R}} \mathrm{D}_{i j} \omega \mathrm{D}_{i} \omega \nu_{j} d \theta \\
& =-\int_{B_{R}} \mathrm{D}_{i}(\Delta \omega) \mathrm{D}_{i} \omega+\int_{\partial B_{R}} \frac{\partial}{\partial \nu} \mathrm{D} \omega \mathrm{D} \omega d \theta \\
& =\int_{B_{R}}(\Delta \omega)^{2}-\int_{\partial B_{R}} \Delta \omega \cdot \frac{\partial}{\partial \nu} \omega d \theta+\int_{\partial B_{R}} \frac{\partial}{\partial \nu} \mathrm{D} \omega \cdot \mathrm{D} \omega d \theta \\
& =\int_{B_{R}}(\Delta \omega)^{2}+\int_{\partial B_{R}} \frac{\partial}{\partial \nu} \mathrm{D} \omega \cdot \mathrm{D} \omega d \theta .
\end{aligned}
$$

The last equality results from our assumption that f vanishes on ∂B, i.e has compact support inside Ω. Now since f is smooth

$$
\begin{aligned}
\mathrm{D}_{i} \omega(x) & =\int_{\Omega} \mathrm{D}_{i} \Gamma(x-y) f(y) d \mathbf{y} \leq \frac{C}{R^{n-1}}, \\
\mathrm{D}_{i j} \omega(x) & =\int_{\Omega} \mathrm{D}_{i j} \Gamma(x-y) f(y) d \mathbf{y} \leq \frac{C}{R^{n}} .
\end{aligned}
$$

Therefore as we let $R \longrightarrow \infty$, the second term - which is integrated only over the sphere of radius R in \mathbb{R}^{n} - tends to 0 . Then we have in the limit the desired result (after substituting (1) for the RHS).

Now if $f \in L^{2}(\Omega)$, approximate it by functions $f_{m} \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ (possible by the density argument used in the past: $\left.\overline{\mathcal{C}_{0}^{\infty}(\Omega)}=L^{2}(\Omega)\right)$ such that $f_{m} \xrightarrow{L^{2}(\Omega)} f$. From the Claim above $\|N f\|_{L^{p}(\Omega)} \leq$ $C\|f\|_{L^{p}(\Omega)}$, hence $\left\|N\left(f_{i}-f_{j}\right)\right\|_{L^{p}(\Omega)} \leq C\left\|f_{i}-f_{j}\right\|_{L^{p}(\Omega)}$, from which $\omega_{m} \equiv N f_{m} \xrightarrow{L^{2}(\Omega)} N f \equiv \omega$. Now $\Delta \omega_{j}=f_{j}$ and by the $\mathcal{C}_{0}^{\infty}(\Omega)$ case applied to the Dirichlet Problem $\Delta\left(\omega_{i}-\omega_{j}\right)=f_{i}-f_{j}$

$$
\int_{\mathbb{R}^{n}}\left|\mathrm{D}^{2}\left(\omega_{i}-\omega_{j}\right)\right|^{2}=\int_{\Omega}\left|f_{i}-f_{j}\right|^{2}
$$

As the RHS tends to 0 for i, j large we have that $\left\{\mathrm{D}^{2} \omega_{m}\right\}$ converges in $L^{2}(\Omega)$, i.e $\left\{\omega_{m}\right\}$ converges in $W^{2,2}(\Omega)$. Since we already know its limit is $\omega \in L^{2}(\Omega)$ we conclude that in fact $\omega \in W^{2,2}(\Omega)$!

